A327575 Decimal expansion of the constant that appears in the asymptotic formula for average order of an infinitary analog of Euler's phi function (A091732).
3, 2, 8, 9, 3, 5, 8, 3, 8, 8, 4, 0, 3, 3, 5, 5, 1, 6, 3, 5, 5, 7, 4, 8, 4, 8, 7, 3, 6, 5, 2, 2, 0, 2, 2, 9, 5, 7, 7, 0, 6, 6, 5, 2, 3, 7, 9, 4, 6, 9, 4, 0, 4, 4, 8, 0, 8, 4, 0, 3, 7, 9, 8, 7, 5, 2, 8, 1, 2, 4, 0, 0, 7, 7, 3, 7, 9, 6, 8, 7, 4, 8, 8, 3, 9, 9, 7
Offset: 0
Examples
0.328935838840335516355748487365220229577066523794694...
References
- Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.
Links
- Graeme L. Cohen and Peter Hagis, Jr., Arithmetic functions associated with infinitary divisors of an integer, International Journal of Mathematics and Mathematical Sciences, Vol. 16, No. 2 (1993), pp. 373-383.
Crossrefs
Programs
-
Mathematica
$MaxExtraPrecision = 1500; m = 1500; em = 10; f[x_] := Sum[Log[1 - x^(2^e)/(1 + 1/x^(2^e))], {e, 0, em}]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[(1/2) * Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]