cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327573 Partial sums of the number of infinitary divisors function: a(n) = Sum_{k=1..n} id(k), where id is A037445.

This page as a plain text file.
%I A327573 #13 May 07 2021 08:45:35
%S A327573 1,3,5,7,9,13,15,19,21,25,27,31,33,37,41,43,45,49,51,55,59,63,65,73,
%T A327573 75,79,83,87,89,97,99,103,107,111,115,119,121,125,129,137,139,147,149,
%U A327573 153,157,161,163,167,169,173,177,181,183,191,195,203,207,211,213,221
%N A327573 Partial sums of the number of infinitary divisors function: a(n) = Sum_{k=1..n} id(k), where id is A037445.
%C A327573 Differs from A306069 at n >= 16.
%D A327573 Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.
%H A327573 Amiram Eldar, <a href="/A327573/b327573.txt">Table of n, a(n) for n = 1..10000</a>
%H A327573 Graeme L. Cohen and Peter Hagis, Jr., <a href="http://dx.doi.org/10.1155/S0161171293000456">Arithmetic functions associated with infinitary divisors of an integer</a>, International Journal of Mathematics and Mathematical Sciences, Vol. 16, No. 2 (1993), pp. 373-383.
%F A327573 a(n) ~ 2 * c * n * log(n), where c = 0.366625... (A327576). [Corrected by _Amiram Eldar_, May 07 2021]
%t A327573 f[p_, e_] := 2^DigitCount[e, 2, 1]; id[1] = 1; id[n_] := Times @@ (f @@@ FactorInteger[n]); Accumulate[Array[id, 100]]
%Y A327573 Cf. A037445, A327576.
%Y A327573 Cf. A006218 (all divisors), A064608 (unitary), A306069 (bi-unitary), A145353 (exponential).
%K A327573 nonn
%O A327573 1,2
%A A327573 _Amiram Eldar_, Sep 17 2019