cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327574 Decimal expansion of the constant that appears in the asymptotic formula for average order of the infinitary divisors sum function (A049417).

Original entry on oeis.org

7, 3, 0, 7, 1, 8, 2, 4, 2, 1, 2, 7, 3, 8, 4, 2, 2, 5, 8, 3, 8, 9, 7, 5, 4, 6, 8, 1, 7, 3, 5, 3, 0, 1, 6, 1, 9, 5, 7, 2, 5, 6, 4, 3, 3, 8, 6, 1, 7, 2, 7, 8, 6, 9, 7, 0, 7, 3, 3, 6, 7, 6, 2, 3, 0, 1, 0, 7, 9, 8, 8, 3, 3, 2, 8, 0, 0, 5, 3, 4, 6, 3, 7, 0, 2, 9, 9
Offset: 0

Views

Author

Amiram Eldar, Sep 17 2019

Keywords

Comments

The asymptotic mean of the infinitary abundancy index lim_{n->oo} (1/n) * Sum_{k=1..n} A049417(k)/k = 1.461436... is twice this constant. - Amiram Eldar, Jun 13 2020

Examples

			0.730718242127384225838975468173530161957256433861727...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.

Crossrefs

Cf. A013661 (corresponding constant for all divisors), A275480 (exponential), A306633 (unitary), A307160 (bi-unitary).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; em = 10; f[x_] := Sum[Log[1 + x^(2^e)/(1 + 1/x^(2^e))], {e, 0, em}]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[(1/2) * Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals Limit_{k->oo} A327566(k)/k^2.
Equals (1/2) * Product_{P} (1 + 1/(P*(P+1))), where P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376).