cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327576 Decimal expansion of the constant that appears in the asymptotic formula for average order of the number of infinitary divisors function (A037445).

This page as a plain text file.
%I A327576 #9 May 07 2021 08:34:47
%S A327576 3,6,6,6,2,5,2,7,6,9,4,5,3,8,1,9,0,9,5,5,6,5,3,2,7,2,0,6,8,7,0,0,1,5,
%T A327576 6,3,0,3,3,6,1,2,1,5,5,9,7,1,0,0,9,2,7,3,0,3,7,5,8,7,5,1,5,3,0,5,7,4,
%U A327576 7,5,3,3,4,4,7,4,9,2,5,0,7,5,7,9,0,5,6
%N A327576 Decimal expansion of the constant that appears in the asymptotic formula for average order of the number of  infinitary divisors function (A037445).
%D A327576 Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.
%H A327576 Graeme L. Cohen and Peter Hagis, Jr., <a href="http://dx.doi.org/10.1155/S0161171293000456">Arithmetic functions associated with infinitary divisors of an integer</a>, International Journal of Mathematics and Mathematical Sciences, Vol. 16, No. 2 (1993), pp. 373-383.
%F A327576 Equals Limit_{n->oo} A327573(n)/(2 * n * log(n)). [Corrected by _Amiram Eldar_, May 07 2021]
%F A327576 Equals (1/2) * Product_{P} (1 - 1/(P+1)^2), where P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376).
%e A327576 0.366625276945381909556532720687001563033612155971009...
%t A327576 m = 1000; em = 10; f[x_] := Sum[Log[1 - 1/(1 + 1/x^(2^e))^2], {e, 0, em}]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; $MaxExtraPrecision = 1500; RealDigits[(1/2)*Exp[f[1/2] + f[1/3]]* Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - (1/2)^k - (1/3)^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
%Y A327576 Cf. A037445, A050376, A327573.
%Y A327576 Cf. A059956 (corresponding constant for unitary divisors), A306071 (bi-unitary).
%K A327576 nonn,cons
%O A327576 0,1
%A A327576 _Amiram Eldar_, Sep 17 2019