cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327578 a(n) = n! * Sum_{d|n} d^(n/d - 1) / d!.

This page as a plain text file.
%I A327578 #10 Jun 10 2022 11:07:49
%S A327578 1,3,7,49,121,2521,5041,208321,907201,32810401,39916801,10621860481,
%T A327578 6227020801,2877004690561,19233710496001,1415779600435201,
%U A327578 355687428096001,1085522620595212801,121645100408832001,653741050484890368001,6259137133527742464001,576612373659657208473601
%N A327578 a(n) = n! * Sum_{d|n} d^(n/d - 1) / d!.
%H A327578 Seiichi Manyama, <a href="/A327578/b327578.txt">Table of n, a(n) for n = 1..425</a>
%F A327578 E.g.f.: Sum_{k>=1} x^k / (k! * (1 - k * x^k)).
%t A327578 a[n_] := n! Sum[d^(n/d - 1)/d!, {d, Divisors[n]}]; Table[a[n], {n, 1, 22}]
%t A327578 nmax = 22; CoefficientList[Series[Sum[x^k/(k! (1 - k x^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
%o A327578 (PARI) a(n) = n! * sumdiv(n, d, d^(n/d - 1) / d!); \\ _Michel Marcus_, Sep 17 2019
%Y A327578 Cf. A057625, A087909, A327579.
%K A327578 nonn
%O A327578 1,2
%A A327578 _Ilya Gutkovskiy_, Sep 17 2019