cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327621 Sums of distinct powers of 3 and powers of 4 (greater than 1).

Original entry on oeis.org

3, 4, 7, 9, 12, 13, 16, 19, 20, 23, 25, 27, 28, 29, 30, 31, 32, 34, 36, 39, 40, 43, 46, 47, 50, 52, 55, 56, 59, 64, 67, 68, 71, 73, 76, 77, 80, 81, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107, 108, 109, 110, 111, 112
Offset: 1

Views

Author

Giuseppe Melfi, Sep 19 2019

Keywords

Comments

From M. F. Hasler, Nov 16 2023: (Start)
Record gaps in this sequence are : a(2) - a(1) = 1, a(3) - a(2) = 3, a(30) - a(29) = 5, a(112) - a(111) = 39, a(9863) - a(9862) = 1084, a(34096) - a(34095) = 7682, ...
These gaps are closely related to the gaps in the set where 3^0 and 4^0 are (both) also allowed to be in the sum, in which case the first missing numbers are A367090 = (62, 63, 143, 144, 207, ...), see also Melfi's paper. It is obvious that the study of these gaps is crucial for the proof of Erdös conjecture.
The record gap a(9863) - a(9862) = 1084 explains the discontinuity seen in the graph of a(1..10^4). (End)

Examples

			40 is in the sequence because 40 = 27 + 9 + 4.
		

Crossrefs

Cf. A000244 (powers of 3), A000302 (powers of 4).
Cf. A005836 and A000695 (sums of distinct powers of 3 and of 4).

Programs

  • Mathematica
    f[b_, m_] := Select[b Range[0, m/b], Max@ IntegerDigits[#, b] < 2 &]; mx=200; Union@ Select[Total /@ Tuples[{f[3, mx], f[4, mx]}], 0 < # < mx &] (* Giovanni Resta, Sep 19 2019 *)
  • PARI
    A327621_upto(N, S=[0])={for(b=3,4, for(k=1, logint(N,b), my(p=b^k); S=setunion(S,[x+p|x<-S,x+p<=N])));S[^1]} \\ M. F. Hasler, Nov 02 2023
    
  • Python
    def A327621_upto(N):
        "list(x < N | x = sum(3^j, j in J) + sum(4^k, k in K); J, K subset N*)."
        S = {0} # empty sum
        for b in (3,4):
            p = b
            while p < N: S |= {k+p for k in S if k+p < N} ; p *= b
        return sorted(S) # includes a(0) = 0, so a(1,2,3,...) = 3,4,9,...
    # M. F. Hasler, Nov 09 2023

Formula

For A(x) the enumerating function, Erdős conjectured that A(x) > c*x.
G. Melfi proved that A(x) > x^0.965 for sufficiently large x.

Extensions

More terms from Giovanni Resta, Sep 19 2019