A327621 Sums of distinct powers of 3 and powers of 4 (greater than 1).
3, 4, 7, 9, 12, 13, 16, 19, 20, 23, 25, 27, 28, 29, 30, 31, 32, 34, 36, 39, 40, 43, 46, 47, 50, 52, 55, 56, 59, 64, 67, 68, 71, 73, 76, 77, 80, 81, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107, 108, 109, 110, 111, 112
Offset: 1
Keywords
Examples
40 is in the sequence because 40 = 27 + 9 + 4.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..10000, Nov 02 2023
- S. A. Burr, P. Erdős, R. L. Graham, and W. Wen-Ching Li, Complete sequences of sets of integer powers, Acta Arithmetica 77(2) (1996), 133-138.
- P. Erdős, Conjecture about the enumerating function A(x)
- G. Melfi, An additive problem about powers of fixed integers, Rend. Circ. Mat. Palermo 50 (2001), 239-246.
Crossrefs
Programs
-
Mathematica
f[b_, m_] := Select[b Range[0, m/b], Max@ IntegerDigits[#, b] < 2 &]; mx=200; Union@ Select[Total /@ Tuples[{f[3, mx], f[4, mx]}], 0 < # < mx &] (* Giovanni Resta, Sep 19 2019 *)
-
PARI
A327621_upto(N, S=[0])={for(b=3,4, for(k=1, logint(N,b), my(p=b^k); S=setunion(S,[x+p|x<-S,x+p<=N])));S[^1]} \\ M. F. Hasler, Nov 02 2023
-
Python
def A327621_upto(N): "list(x < N | x = sum(3^j, j in J) + sum(4^k, k in K); J, K subset N*)." S = {0} # empty sum for b in (3,4): p = b while p < N: S |= {k+p for k in S if k+p < N} ; p *= b return sorted(S) # includes a(0) = 0, so a(1,2,3,...) = 3,4,9,... # M. F. Hasler, Nov 09 2023
Formula
For A(x) the enumerating function, Erdős conjectured that A(x) > c*x.
G. Melfi proved that A(x) > x^0.965 for sufficiently large x.
Extensions
More terms from Giovanni Resta, Sep 19 2019
Comments