This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327623 #12 Dec 09 2020 10:56:42 %S A327623 0,1,1,7,27,121,553,3865,24625,202954,1519540,14193455,132441998, %T A327623 1381539355,14096067555,168745220585,1961128020387,25473872598375, %U A327623 324797436024684,4647784901400988,65394584337577858,1012005650484163962,15285115573675197704 %N A327623 Number of parts in all n-times partitions of n into distinct parts. %H A327623 Alois P. Heinz, <a href="/A327623/b327623.txt">Table of n, a(n) for n = 0..300</a> %H A327623 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %p A327623 b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], %p A327623 `if`(k=0, [1, 1], `if`(i*(i+1)/2<n, 0, b(n, i-1, k)+ %p A327623 (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]* %p A327623 b(n-i, min(n-i, i-1), k)))(b(i$2, k-1))))) %p A327623 end: %p A327623 a:= n-> b(n$3)[2]: %p A327623 seq(a(n), n=0..23); %t A327623 b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, Return[{1, 0}]]; If[k == 0, Return[{1, 1}]]; If[i (i + 1)/2 < n, Return[{0, 0}]]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]]; %t A327623 a[n_] := b[n, n, n][[2]]; %t A327623 a /@ Range[0, 23] (* _Jean-François Alcover_, Dec 09 2020, after _Alois P. Heinz_ *) %Y A327623 Main diagonal of A327622. %Y A327623 Cf. A327619. %K A327623 nonn %O A327623 0,4 %A A327623 _Alois P. Heinz_, Sep 19 2019