cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327639 Number T(n,k) of proper k-times partitions of n; triangle T(n,k), n >= 0, 0 <= k <= max(0,n-1), read by rows.

This page as a plain text file.
%I A327639 #41 Dec 09 2020 15:12:15
%S A327639 1,1,1,1,1,2,1,1,4,6,3,1,6,15,16,6,1,10,45,88,76,24,1,14,93,282,420,
%T A327639 302,84,1,21,223,1052,2489,3112,1970,498,1,29,444,2950,9865,18123,
%U A327639 18618,10046,2220,1,41,944,9030,42787,112669,173338,155160,74938,15108
%N A327639 Number T(n,k) of proper k-times partitions of n; triangle T(n,k), n >= 0, 0 <= k <= max(0,n-1), read by rows.
%C A327639 In each step at least one part is replaced by the partition of itself into smaller parts. The parts are not resorted.
%C A327639 T(n,k) is defined for all n>=0 and k>=0.  The triangle displays only positive terms.  All other terms are zero.
%C A327639 Row n is the inverse binomial transform of the n-th row of array A323718.
%H A327639 Alois P. Heinz, <a href="/A327639/b327639.txt">Rows n = 0..170, flattened</a>
%H A327639 Wikipedia, <a href="https://en.wikipedia.org/wiki/Iverson_bracket">Iverson bracket</a>
%H A327639 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>
%F A327639 T(n,k) = Sum_{i=0..k} (-1)^(k-i) * binomial(k,i) * A323718(n,i).
%F A327639 T(n,n-1) = A327631(n,n-1)/n = A327643(n) for n >= 1.
%F A327639 Sum_{k=1..n-1} k * T(n,k) = A327646(n).
%F A327639 Sum_{k=0..max(0,n-1)} (-1)^k * T(n,k) = [n<2], where [] is an Iverson bracket.
%e A327639 T(4,0) = 1:  4
%e A327639 T(4,1) = 4:     T(4,2) = 6:          T(4,3) = 3:
%e A327639   4-> 31          4-> 31 -> 211        4-> 31 -> 211 -> 1111
%e A327639   4-> 22          4-> 31 -> 1111       4-> 22 -> 112 -> 1111
%e A327639   4-> 211         4-> 22 -> 112        4-> 22 -> 211 -> 1111
%e A327639   4-> 1111        4-> 22 -> 211
%e A327639                   4-> 22 -> 1111
%e A327639                   4-> 211-> 1111
%e A327639 Triangle T(n,k) begins:
%e A327639   1;
%e A327639   1;
%e A327639   1,  1;
%e A327639   1,  2,   1;
%e A327639   1,  4,   6,    3;
%e A327639   1,  6,  15,   16,     6;
%e A327639   1, 10,  45,   88,    76,     24;
%e A327639   1, 14,  93,  282,   420,    302,     84;
%e A327639   1, 21, 223, 1052,  2489,   3112,   1970,    498;
%e A327639   1, 29, 444, 2950,  9865,  18123,  18618,  10046,  2220;
%e A327639   1, 41, 944, 9030, 42787, 112669, 173338, 155160, 74938, 15108;
%e A327639   ...
%p A327639 b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1,
%p A327639       b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k))
%p A327639     end:
%p A327639 T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k):
%p A327639 seq(seq(T(n, k), k=0..max(0, n-1)), n=0..12);
%t A327639 b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0, 1, If[i > 1, b[n, i - 1, k], 0] + b[i, i, k - 1] b[n - i, Min[n - i, i], k]];
%t A327639 T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
%t A327639 Table[T[n, k], {n, 0, 12}, {k, 0, Max[0, n - 1] }] // Flatten (* _Jean-François Alcover_, Dec 09 2020, after _Alois P. Heinz_ *)
%Y A327639 Columns k=0-2 give A000012, A000065, A327769.
%Y A327639 Row sums give A327644.
%Y A327639 T(2n,n) gives A327645.
%Y A327639 Cf. A323718, A327631, A327643, A327646.
%K A327639 nonn,tabf
%O A327639 0,6
%A A327639 _Alois P. Heinz_, Sep 20 2019