This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327641 #11 Jan 28 2025 12:26:11 %S A327641 1,1,2,2,2,2,8,2,2,2,11,2,8,2,14,14,2,2,8,2,11,18,20,2,8,2,23,2,14,2, %T A327641 742,2,2,26,29,26,8,2,32,30,11,2,1654,2,20,14,38,2,8,2,11,38,23,2,8, %U A327641 38,14,42,47,2,742,2,50,18,2,44,5257,2,29,50,5066,2,8,2,59,14 %N A327641 Number of partitions of n into divisors d of n such that n/d is squarefree. %H A327641 Antti Karttunen, <a href="/A327641/b327641.txt">Table of n, a(n) for n = 0..20000</a> %F A327641 a(n) = [x^n] Product_{d|n} 1 / (1 - mu(n/d)^2 * x^d). %t A327641 a[n_] := SeriesCoefficient[Product[1/(1 - MoebiusMu[n/d]^2 x^d), {d, Divisors[n]}], {x, 0, n}]; Table[a[n], {n, 0, 75}] %o A327641 (Magma) [1] cat [#RestrictedPartitions(n,{d:d in Divisors(n)|IsSquarefree(n div d)}):n in [1..75]]; // _Marius A. Burtea_, Sep 20 2019 %o A327641 (PARI) A327641(n) = if(!n, 1, my(p = Ser(1, 'x, 1+n)); fordiv(n, d, if(issquarefree(n/d), p /= (1 - 'x^d))); polcoef(p, n)); \\ _Antti Karttunen_, Jan 28 2025 %Y A327641 Cf. A008683, A018818, A225244, A225245, A246655 (positions of 2's). %K A327641 nonn %O A327641 0,3 %A A327641 _Ilya Gutkovskiy_, Sep 20 2019