This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327643 #63 Apr 28 2020 09:32:06 %S A327643 1,1,1,3,6,24,84,498,2220,15108,92328,773580,5636460,53563476, %T A327643 471562512,5270698716,52117937052,637276396764,7317811499736, %U A327643 100453675122444,1276319138168796,19048874583061716,270233458572751440,4442429353548965628,68384217440167826412 %N A327643 Number of refinement sequences n -> ... -> {1}^n, where in each step one part is replaced by a partition of itself into two smaller parts (in weakly decreasing order). %C A327643 Number of proper (n-1)-times partitions of n, cf. A327639. %C A327643 Might be called "Half-Factorial numbers" analog to the "Half-Catalan numbers" (A000992). %C A327643 The recursion formula is a special case of the formula given in A327729. %C A327643 a(n+1)/(n*a(n)) tends to 0.67617164... - _Vaclav Kotesovec_, Apr 28 2020 %H A327643 Alois P. Heinz, <a href="/A327643/b327643.txt">Table of n, a(n) for n = 1..481</a> %H A327643 Vaclav Kotesovec, <a href="/A327643/a327643.jpg">Plot of a(n+1)/(n*a(n)) for n = 1..10000</a> %H A327643 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %F A327643 a(n) = Sum_{j=1..floor(n/2)} C(n-2,j-1) a(j)*a(n-j) for n > 1, a(1) = 1. %F A327643 a(n) = A327639(n,n-1) = A327631(n,n-1)/n. %e A327643 a(1) = 1: %e A327643 1 %e A327643 a(2) = 1: %e A327643 2 -> 11 %e A327643 a(3) = 1: %e A327643 3 -> 21 -> 111 %e A327643 a(4) = 3: %e A327643 4 -> 31 -> 211 -> 1111 %e A327643 4 -> 22 -> 112 -> 1111 %e A327643 4 -> 22 -> 211 -> 1111 %e A327643 a(5) = 6: %e A327643 5 -> 41 -> 311 -> 2111 -> 11111 %e A327643 5 -> 41 -> 221 -> 1121 -> 11111 %e A327643 5 -> 41 -> 221 -> 2111 -> 11111 %e A327643 5 -> 32 -> 212 -> 1112 -> 11111 %e A327643 5 -> 32 -> 212 -> 2111 -> 11111 %e A327643 5 -> 32 -> 311 -> 2111 -> 11111 %p A327643 b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1, %p A327643 b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k)) %p A327643 end: %p A327643 a:= n-> add(b(n$2, i)*(-1)^(n-1-i)*binomial(n-1, i), i=0..n-1): %p A327643 seq(a(n), n=1..29); %p A327643 # second Maple program: %p A327643 a:= proc(n) option remember; `if`(n=1, 1, %p A327643 add(a(j)*a(n-j)*binomial(n-2, j-1), j=1..n/2)) %p A327643 end: %p A327643 seq(a(n), n=1..29); %t A327643 a[n_] := a[n] = Sum[Binomial[n-2, j-1] a[j] a[n-j], {j, n/2}]; a[1] = 1; %t A327643 Array[a, 25] (* _Jean-François Alcover_, Apr 28 2020 *) %Y A327643 Cf. A000142, A000992, A002846 (only one part of each size is replaceable), A327631, A327639, A327697, A327698, A327699, A327702, A327729. %K A327643 nonn %O A327643 1,4 %A A327643 _Alois P. Heinz_, Sep 20 2019