cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327646 Total number of steps in all proper many times partitions of n.

This page as a plain text file.
%I A327646 #17 Dec 18 2020 04:01:16
%S A327646 0,0,1,4,25,108,788,4740,44445,339632,3625136,35508536,462626736,
%T A327646 5273725108,76634997096,1047347436984,17542238923677,268193251446228,
%U A327646 4949536256552648,86303019303031400,1768833677916545596,34165810747993948664,759192269597947084836
%N A327646 Total number of steps in all proper many times partitions of n.
%C A327646 In each step at least one part is replaced by the partition of itself into smaller parts. The parts are not resorted.
%H A327646 Alois P. Heinz, <a href="/A327646/b327646.txt">Table of n, a(n) for n = 0..400</a>
%F A327646 a(n) = Sum_{k=1..n-1} k * A327639(n,k).
%e A327646 a(3) = 4 = 0+1+1+2, counting steps "->" in: 3, 3->21, 3->111, 3->21->111.
%e A327646 a(4) = 25: 4, 4->31, 4->22, 4->211, 4->1111, 4->31->211, 4->31->1111, 4->22->112, 4->22->211, 4->22->1111, 4->211->1111, 4->31->211->1111, 4->22->112->1111, 4->22->211->1111.
%p A327646 b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1,
%p A327646       b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k))
%p A327646     end:
%p A327646 a:= n-> add(k*add(b(n$2, i)*(-1)^(k-i)*
%p A327646         binomial(k, i), i=0..k), k=1..n-1):
%p A327646 seq(a(n), n=0..23);
%t A327646 b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0, 1, If[i > 1, b[n, i - 1, k], 0] + b[i, i, k - 1] b[n - i, Min[n - i, i], k]];
%t A327646 a[n_] := Sum[k Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}], {k, 1, n - 1}];
%t A327646 a /@ Range[0, 23] (* _Jean-François Alcover_, Dec 18 2020, after _Alois P. Heinz_ *)
%Y A327646 Cf. A327639.
%K A327646 nonn
%O A327646 0,4
%A A327646 _Alois P. Heinz_, Sep 20 2019