cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327648 Number of parts in all proper many times partitions of n.

This page as a plain text file.
%I A327648 #15 May 04 2020 12:35:36
%S A327648 0,1,3,9,45,185,1277,7469,67993,514841,5414197,52609653,679432169,
%T A327648 7704502013,111283754969,1515535050805,25257251330321,385282195339393,
%U A327648 7088110874426409,123325149268482781,2520808658222616653,48623257343586890769,1078165538033926164281
%N A327648 Number of parts in all proper many times partitions of n.
%C A327648 In each step at least one part is replaced by the partition of itself into smaller parts. The parts are not resorted.
%H A327648 Alois P. Heinz, <a href="/A327648/b327648.txt">Table of n, a(n) for n = 0..300</a>
%H A327648 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>
%e A327648 a(3) = 9 = 1 + 2 + 3 + 3, counting the (final) parts in: 3, 3->21, 3->111, 3->21->111.
%e A327648 a(4) = 45: 4, 4->31, 4->22, 4->211, 4->1111, 4->31->211, 4->31->1111, 4->22->112, 4->22->211, 4->22->1111, 4->211->1111, 4->31->211->1111, 4->22->112->1111, 4->22->211->1111.
%p A327648 b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
%p A327648      `if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
%p A327648          (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
%p A327648         b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
%p A327648     end:
%p A327648 a:= n-> add(add(b(n$2, i)[2]*(-1)^(k-i)*
%p A327648         binomial(k, i), i=0..k), k=0..n-1):
%p A327648 seq(a(n), n=0..25);
%t A327648 b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
%t A327648 a[n_] := Sum[b[n, n, i][[2]] (-1)^(k - i) Binomial[k, i], {k, 0, n - 1}, {i, 0, k}];
%t A327648 a /@ Range[0, 25] (* _Jean-François Alcover_, May 01 2020, after Maple *)
%Y A327648 Row sums of A327631.
%Y A327648 Cf. A327644, A327647.
%K A327648 nonn
%O A327648 0,3
%A A327648 _Alois P. Heinz_, Sep 20 2019