A327649 Maximum value of powers of 2 mod n.
0, 1, 2, 2, 4, 4, 4, 4, 8, 8, 10, 8, 12, 8, 8, 8, 16, 16, 18, 16, 16, 20, 18, 16, 24, 24, 26, 16, 28, 16, 16, 16, 32, 32, 32, 32, 36, 36, 32, 32, 40, 32, 42, 40, 38, 36, 42, 32, 46, 48, 32, 48, 52, 52, 52, 32, 56, 56, 58, 32, 60, 32, 32, 32, 64, 64, 66, 64, 64
Offset: 1
Examples
For n = 10: - the first powers of 2 mod 10 are: k 2^k mod 10 -- ---------- 0 1 1 2 2 4 3 8 4 6 5 2 - those values are eventually periodic, the maximum being 8, - hence a(10) = 8.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..8192
- Rémy Sigrist, Colored scatterplot of the ordinal transform of the first 2^16 terms (colored pixels correspond to n's such that a(n) is a power of 2)
Programs
-
Maple
f:= proc(n) local S,k,x,m; x:= 1; S:= {1}; m:= 1; for k from 1 do x:= 2*x mod n; if member(x,S) then return m fi; S:= S union {x}; m:= max(m,x) od end proc: f(1):= 0: map(f, [$1..100]); # Robert Israel, Feb 15 2023
-
Mathematica
a[n_] := PowerMod[2, Range[0, n-1], n] // Max; Table[a[n], {n, 1, 1000}] (* Jean-François Alcover, May 14 2023 *)
-
PARI
a(n) = { my (p=1%n, mx=p); while (1, p=(2*p)%n; if (mx
Formula
a(2^k) = 2^(k-1) for any k > 0.
a(2^k+1) = 2^k for any k >= 0.
a(2^k-1) = 2^(k-1) for any k > 1.
If n = 2^j * r with r odd > 1 then a(n) = 2^j * a(r). - Robert Israel, Feb 15 2023