A327651 Composite numbers k coprime to 8 such that k divides Pell(k - Kronecker(8,k)), Pell = A000129.
35, 169, 385, 779, 899, 961, 1121, 1189, 2419, 2555, 2915, 3107, 3827, 6083, 6265, 6441, 6601, 6895, 6965, 7801, 8119, 8339, 9179, 9809, 9881, 10403, 10763, 10835, 10945, 13067, 14027, 14111, 15179, 15841, 18241, 18721, 19097, 20833, 20909, 22499, 23219, 24727, 26795, 27869, 27971
Offset: 1
Keywords
Examples
Pell(36) = 21300003689580 is divisible by 35, so 35 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
pellmod(n, m)=((Mod([2, 1; 1, 0], m))^n)[1, 2] isA327651(n)=!isprime(n) && !pellmod(n-kronecker(8,n), n) && gcd(n,8)==1 && n>1
Comments