This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327654 #19 May 29 2025 06:05:17 %S A327654 4,8,9,119,399,649,1023,1179,1189,1199,1881,2703,3519,4081,4187,5151, %T A327654 7055,7361,10349,12871,13833,14041,15519,16109,18639,22593,23479, %U A327654 24769,26937,28421,29007,31631,34111,34997,38503,41441,44671,48577,50545,51711,53823,56279,57407,58081,59081 %N A327654 Composite numbers k coprime to 13 such that k divides A006190(k) - Kronecker(13,k). %C A327654 Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n) = m*x(n-1) + x(n-2) for k >= 2. For primes p, we have (a) p divides x(p-((m^2+4)/p)); (b) x(p) == ((m^2+4)/p) (mod p), where (D/p) is the Kronecker symbol. This sequence gives composite numbers k such that gcd(k, m^2+4) = 1 and that a condition similar to (b) holds for k, where m = 3. %C A327654 If k is not required to be coprime to m^2 + 4 (= 13), then there are 352 such k <= 10^5, and 1457 such k <= 10^6, while there are only 54 terms <= 10^5 and 148 terms <= 10^6 in this sequence. %H A327654 Amiram Eldar, <a href="/A327654/b327654.txt">Table of n, a(n) for n = 1..2000</a> %e A327654 A006190(8) = 3927 == Kronecker(13,8) (mod 8), so 8 is a term. %o A327654 (PARI) seqmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2] %o A327654 isA327654(n)=!isprime(n) && seqmod(n, n)==kronecker(13,n) && gcd(n,13)==1 && n>1 %Y A327654 m m=1 m=2 m=3 %Y A327654 k | x(k-Kronecker(m^2+4,k))* A081264 U A141137 A327651 A327653 %Y A327654 k | x(k)-Kronecker(m^2+4,k) A049062 A099011 this seq %Y A327654 both A212424 A327652 A327655 %Y A327654 * k is composite and coprime to m^2 + 4. %Y A327654 Cf. A006190, A011583 ({Kronecker(13,n)}). %K A327654 nonn %O A327654 1,1 %A A327654 _Jianing Song_, Sep 20 2019