cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327671 Expansion of Product_{k>=1} (1 - (x*(1 - x))^k).

This page as a plain text file.
%I A327671 #16 May 07 2021 05:09:11
%S A327671 1,-1,0,2,-1,1,-5,11,-17,26,-36,35,-22,19,-67,219,-480,687,-469,-573,
%T A327671 2508,-4785,6370,-6445,5235,-4543,8681,-26815,75043,-173159,334721,
%U A327671 -563200,876876,-1363232,2208921,-3621971,5631540,-7897299,9738858,-10479294,9989646,-9350820
%N A327671 Expansion of Product_{k>=1} (1 - (x*(1 - x))^k).
%F A327671 G.f.: exp(-Sum_{k>=1} sigma(k)*(x*(1-x))^k/k).
%t A327671 m = 41; CoefficientList[Series[Product[(1 - (x*(1 - x))^k), {k, 1, m}], {x, 0, m}], x] (* _Amiram Eldar_, May 07 2021 *)
%o A327671 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-(x*(1-x))^k))
%o A327671 (PARI) N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, sigma(k)*(x*(1-x))^k/k)))
%Y A327671 Convolution inverse of A307500.
%Y A327671 Cf. A307310, A307501.
%K A327671 sign
%O A327671 0,4
%A A327671 _Seiichi Manyama_, Sep 21 2019