This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327681 #13 Dec 18 2020 04:01:42 %S A327681 1,1,21,619,32621,2619031,298688151,45747815408,9130881915237, %T A327681 2302153903685914,716914926484850891,270654298469985496639, %U A327681 121905995767297357401683,64616493201145984241278851,39838866068219563302546530228,28277347692301453998991014108124 %N A327681 Number of colored integer partitions of 2n using all colors of an n-set such that parts i have distinct color patterns in arbitrary order and each pattern for a part i has i colors in (weakly) increasing order. %H A327681 Vaclav Kotesovec, <a href="/A327681/b327681.txt">Table of n, a(n) for n = 0..200</a> (terms 0..100 from Alois P. Heinz) %F A327681 a(n) = A309973(2n,n). %p A327681 b:= proc(n, i, k) option remember; `if`(n=0, 1, %p A327681 `if`(i<1, 0, add(b(n-i*j, min(n-i*j, i-1), k)* %p A327681 binomial(binomial(k+i-1, i), j)*j!, j=0..n/i))) %p A327681 end: %p A327681 a:= n-> add(b(2*n$2, i)*(-1)^(n-i)*binomial(n, i), i=0..n): %p A327681 seq(a(n), n=0..17); %t A327681 b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] Binomial[Binomial[k + i - 1, i], j]*j!, {j, 0, n/i}]]]; %t A327681 a[n_] := Sum[b[2n, 2n, i] (-1)^(n-i) Binomial[n, i], {i, 0, n}]; %t A327681 a /@ Range[0, 17] (* _Jean-François Alcover_, Dec 18 2020, after _Alois P. Heinz_ *) %Y A327681 Cf. A309973. %K A327681 nonn %O A327681 0,3 %A A327681 _Alois P. Heinz_, Sep 21 2019