This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327688 #24 Feb 16 2025 08:33:58 %S A327688 1,-1,0,0,-1,0,1,0,0,0,0,-2,2,1,0,1,-1,-1,-1,-1,2,1,0,1,-1,-3,1,2,-1, %T A327688 0,4,-6,-2,3,-1,1,4,-1,-2,-1,2,-4,4,0,-3,1,-3,4,2,-1,3,-1,-3,-1,2,-3, %U A327688 1,2,-6,-3,12,-7,3,11,-7,-4,7,-10,-1,7,2,-16,11,2,-10,14,-4,3,-3 %N A327688 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A007325. %H A327688 Vaclav Kotesovec, <a href="/A327688/b327688.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Seiichi Manyama) %H A327688 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rogers-RamanujanContinuedFraction.html">Rogers-Ramanujan Continued Fraction.</a> %F A327688 G.f.: Product_{i>=1} Product_{j>=1} (1-x^(i*(5*j-1))) * (1-x^(i*(5*j-4))) / ((1-x^(i*(5*j-2))) * (1-x^(i*(5*j-3)))). %F A327688 G.f.: Product_{k>=1} (1-x^k)^A035187(k). %o A327688 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^sumdiv(k, d, kronecker(5, d)))) %Y A327688 Cf. A007325, A035187, A307757, A327686, A327690, A327691, A327716. %K A327688 sign,look %O A327688 0,12 %A A327688 _Seiichi Manyama_, Sep 22 2019