cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327691 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A003106.

This page as a plain text file.
%I A327691 #17 Sep 23 2019 07:22:18
%S A327691 1,0,1,1,2,1,5,3,8,7,13,11,26,20,40,39,66,61,111,102,171,174,266,269,
%T A327691 427,423,638,675,969,1016,1477,1544,2177,2350,3209,3466,4754,5112,
%U A327691 6867,7546,9931,10899,14343,15729,20406,22653,28962,32168,41069,45561,57551,64382,80491,90030,112286
%N A327691 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A003106.
%H A327691 Vaclav Kotesovec, <a href="/A327691/b327691.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Seiichi Manyama)
%F A327691 G.f.: Product_{i>=1} Product_{j>=1} 1 / ((1-x^(i*(5*j-2))) * (1-x^(i*(5*j-3)))).
%t A327691 nmax = 50; CoefficientList[Series[Product[1/(QPochhammer[x^(5*j - 3)] * QPochhammer[x^(5*j - 2)]), {j, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 23 2019 *)
%Y A327691 Cf. A003106, A327688, A327690.
%K A327691 nonn
%O A327691 0,5
%A A327691 _Seiichi Manyama_, Sep 22 2019