cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327692 Number of length-n phone numbers that can be dialed by a chess knight on a 0-9 keypad that starts on any number and takes n-1 steps.

Original entry on oeis.org

10, 20, 46, 104, 240, 544, 1256, 2848, 6576, 14912, 34432, 78080, 180288, 408832, 944000, 2140672, 4942848, 11208704, 25881088, 58689536, 135515136, 307302400, 709566464, 1609056256, 3715338240, 8425127936, 19453763584
Offset: 1

Views

Author

Derek Lim, Sep 22 2019

Keywords

Comments

The keypad is of the form:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
| * | 0 | # |
+---+---+---+

Examples

			For n = 1 the a(1) = 10 numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
For n = 2 the a(2) = 20 numbers are 04, 06, 16, 18, 27, 29, 34, 38, 43, 49, 40, 61, 67, 60, 72, 76, 81, 83, 92, 94.
		

Crossrefs

Programs

  • Python
    def number_dialable(N):
        reach = ((4,6),(6,8),(7,9),(4,8),(3,9,0),(),(1,7,0),(2,6),(1,3),(2,4))
        M = [[0] * 10 for _ in range(N)]
        M[0] = [1]*10
        for step in range(1,N):
            for tile in range(10):
                for nxt in reach[tile]:
                    M[step][nxt] += M[step-1][tile]
        return [sum(row) for row in M]

Formula

Conjectures from Colin Barker, Oct 01 2019: (Start)
G.f.: 2*x*(5 + 10*x - 7*x^2 - 8*x^3 + 2*x^4) / (1 - 6*x^2 + 4*x^4).
a(n) = 6*a(n-2) - 4*a(n-4) for n>6. (End)
Comments from Francesca Arici, Apr 17 2024: (Start)
The recursive formula a(n) = 6*a(n-2) - 4*a(n-4) also holds for n=6.
It can be proved using results from graph theory. Indeed, if we consider the directed graph associated to the knight dialler problem, then a(n) equals the number of paths in the graph of length n-1 in the graph. This number can be expressed in terms of the grand sum of powers of the incidence matrix A(i,j) of the graph.
Moreover, the matrix A is diagonalizable over the reals, with one zero eigenvalue, say L(0)=0. Combining this with the formula for the grand sum of a diagonalizable matrix in term of its eigenvalues, the above conjecture reduces to checking an algebraic condition on the nonzero eigenvalues L(1), ..., L(8) of A. (End)