This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327697 #12 Sep 23 2019 17:27:16 %S A327697 1,1,2,7,22,122,598,4683,31148,292008,2560274,30122014,313694962, %T A327697 4189079688,53048837390,826150653479,11827659365138,204993767192252, %U A327697 3371451881544534,65337695492942258,1198123466804343518,25318312971995895392,516420623159289735874 %N A327697 Number of refinement sequences n -> ... -> {1}^n, where in each step every single part of a nonempty selection of parts is replaced by a partition of itself into smaller parts (in weakly decreasing order). %H A327697 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %e A327697 a(1) = 1: %e A327697 1 %e A327697 a(2) = 1: %e A327697 2 -> 11 %e A327697 a(3) = 2: %e A327697 3 -> 111 %e A327697 3 -> 21 -> 111 %e A327697 a(4) = 7: %e A327697 4 -> 1111 %e A327697 4 -> 211 -> 1111 %e A327697 4 -> 31 -> 1111 %e A327697 4 -> 31 -> 211 -> 1111 %e A327697 4 -> 22 -> 1111 %e A327697 4 -> 22 -> 112 -> 1111 %e A327697 4 -> 22 -> 211 -> 1111 %Y A327697 Cf. A002846, A327643, A327698, A327699, A327702. %K A327697 nonn %O A327697 1,3 %A A327697 _Alois P. Heinz_, Sep 22 2019