This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327702 #12 Sep 23 2019 17:25:33 %S A327702 1,1,2,5,14,47,174,730,3300,16361,85991,485982,2877194,18064663, %T A327702 118111993,810388956,5755059363,42643884970,325468477721, %U A327702 2576976440845,20960795772211,176056148076418,1514733658531058,13418942409623726,121442280888373117,1128425823360525506 %N A327702 Number of refinement sequences n -> ... -> {1}^n, where in each step one part that is the rightmost copy of its size is replaced by a partition of itself into smaller parts (in weakly decreasing order). %H A327702 Alois P. Heinz, <a href="/A327702/b327702.txt">Table of n, a(n) for n = 1..58</a> %H A327702 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %e A327702 a(4) = 5: %e A327702 4 -> 1111 %e A327702 4 -> 211 -> 1111 %e A327702 4 -> 31 -> 1111 %e A327702 4 -> 31 -> 211 -> 1111 %e A327702 4 -> 22 -> 211 -> 1111 %p A327702 v:= l-> [seq(`if`(i=1 or l[i]>l[i-1], seq(subs(1=[][], sort( %p A327702 subsop(i=h[], l))), h=({combinat[partition](l[i])[]} %p A327702 minus{[l[i]]})), [][]), i=1..nops(l))]: %p A327702 b:= proc(l) option remember; `if`(max(l)<2, 1, add(b(h), h=v(l))) end: %p A327702 a:= n-> b([n]): %p A327702 seq(a(n), n=1..26); %Y A327702 Cf. A002846, A327643, A327697, A327698, A327699. %K A327702 nonn %O A327702 1,3 %A A327702 _Alois P. Heinz_, Sep 22 2019