This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327711 #18 Jul 10 2023 09:52:08 %S A327711 1,1,2,3,6,10,27,55,171,475,1555,4915,20023,68243,288024,1213828, %T A327711 5435935,23966970,121432923,578757824,3130381590,16427772974, %U A327711 91877826663,519546134163,3199523135912,18868494152257,120274458082095,772954621249540,5219747666882153 %N A327711 Sum of multinomials M(n-k; p_1-1, ..., p_k-1), where p = (p_1, ..., p_k) ranges over all partitions of n (k is a partition length). %C A327711 Number of partitions of [n] whose block sizes are nondecreasing when blocks are ordered by their minima and these minima are {1..k} (for some k <= n). a(5) = 10: 12345, 13|245, 14|235, 15|234, 1|2345, 1|24|35, 1|25|34, 1|2|345, 1|2|3|45, 1|2|3|4|5. %H A327711 Alois P. Heinz, <a href="/A327711/b327711.txt">Table of n, a(n) for n = 0..635</a> %H A327711 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients">Multinomial coefficients</a> %H A327711 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %p A327711 with(combinat): %p A327711 a:= n-> add(multinomial(n-nops(p), map( %p A327711 x-> x-1, p)[], 0), p=partition(n)): %p A327711 seq(a(n), n=0..28); %p A327711 # second Maple program: %p A327711 b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<2, 0, %p A327711 b(n, i-1, p)) +b(n-i, min(n-i, i), p-1)/(i-1)!) %p A327711 end: %p A327711 a:= n-> b(n$3): %p A327711 seq(a(n), n=0..28); %t A327711 b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 2, 0, b[n, i - 1, p]] + b[n - i, Min[n - i, i], p - 1]/(i - 1)!]; %t A327711 a[n_] := b[n, n, n]; %t A327711 a /@ Range[0, 28] (* _Jean-François Alcover_, May 01 2020, from 2nd Maple program *) %Y A327711 Cf. A005651, A179973, A326493, A327712, A327729. %K A327711 nonn %O A327711 0,3 %A A327711 _Alois P. Heinz_, Sep 22 2019