This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327712 #16 Jul 17 2023 14:48:40 %S A327712 1,1,1,3,3,9,29,57,135,615,2635,6273,25151,82623,525281,2941047, %T A327712 9100709,38766777,205155713,902705793,7714938567,52987356783, %U A327712 204844103977,1042657233471,5520661314689,38159472253821,211945677298567,2404720648663335,19773733727088813 %N A327712 Sum of multinomials M(n-k; p_1-1, ..., p_k-1), where p = (p_1, ..., p_k) ranges over all compositions of n into distinct parts (k is a composition length). %C A327712 Number of partitions of [n] with distinct block sizes such that each block contains exactly one block size as an element. a(5) = 9: 12345, 1235|4, 124|35, 125|34, 12|345, 134|25, 135|24, 13|245, 1|2345. %H A327712 Alois P. Heinz, <a href="/A327712/b327712.txt">Table of n, a(n) for n = 0..706</a> %H A327712 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients">Multinomial coefficients</a> %H A327712 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %H A327712 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %p A327712 with(combinat): %p A327712 a:= n-> add(multinomial(n-nops(p), map(x-> x-1, p)[], 0), p=map(h-> %p A327712 permute(h)[], select(l-> nops(l)=nops({l[]}), partition(n)))): %p A327712 seq(a(n), n=0..28); %p A327712 # second Maple program: %p A327712 a:= proc(m) option remember; local b; b:= %p A327712 proc(n, i, j) option remember; `if`(i*(i+1)/2>=n, %p A327712 `if`(n=0, (m-j)!*j!, b(n, i-1, j)+ %p A327712 b(n-i, min(n-i, i-1), j+1)/(i-1)!), 0) %p A327712 end: b(m$2, 0): %p A327712 end: %p A327712 seq(a(n), n=0..28); %t A327712 a[m_] := a[m] = Module[{b}, b[n_, i_, j_] := b[n, i, j] = If[i(i + 1)/2 >= n, If[n == 0, (m - j)! j!, b[n, i - 1, j] + b[n - i, Min[n - i, i - 1], j + 1]/(i - 1)!], 0]; b[m, m, 0]]; %t A327712 a /@ Range[0, 28] (* _Jean-François Alcover_, May 10 2020, after 2nd Maple program *) %Y A327712 Cf. A026898, A326493, A327711, A364281. %K A327712 nonn %O A327712 0,4 %A A327712 _Alois P. Heinz_, Sep 22 2019