This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327717 #14 Sep 23 2019 07:32:17 %S A327717 1,1,1,1,2,3,2,3,5,6,6,7,10,12,12,15,20,23,24,28,36,42,44,51,64,73,78, %T A327717 89,108,123,132,150,179,202,218,246,288,324,350,393,456,509,552,616, %U A327717 706,786,852,948,1078,1195,1297,1436,1620,1791,1942,2145,2406,2650,2874,3163,3528 %N A327717 Expansion of Product_{k>=1} (1 + x^k/(1 + x^(2*k))). %H A327717 Vaclav Kotesovec, <a href="/A327717/b327717.txt">Table of n, a(n) for n = 0..10000</a> %F A327717 a(n) ~ 5^(1/4) * exp(sqrt(5*n/2)*Pi/3) / (2^(5/4)*3*n^(3/4)). - _Vaclav Kotesovec_, Sep 23 2019 %t A327717 nmax = 100; CoefficientList[Series[Product[1 + x^k/(1 + x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 23 2019 *) %t A327717 nmax = 100; CoefficientList[Series[Product[(1 + x^k + x^(2*k)) * (1 - x^(4*k - 2)), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 23 2019 *) %o A327717 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, 1+x^k/(1+x^(2*k)))) %Y A327717 Convolution inverse of A307757. %Y A327717 Cf. A000726, A327716, A327718, A327719, A327720. %K A327717 nonn %O A327717 0,5 %A A327717 _Seiichi Manyama_, Sep 23 2019