cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327725 Expansion of Product_{i>=1, j>=1} (1 + x^(i*prime(j))).

This page as a plain text file.
%I A327725 #9 Sep 23 2019 14:03:33
%S A327725 1,0,1,1,1,2,3,3,4,6,7,9,12,14,18,24,27,35,43,51,64,79,92,113,137,162,
%T A327725 195,235,276,329,394,460,546,646,753,890,1044,1214,1422,1662,1927,
%U A327725 2245,2611,3015,3497,4051,4662,5385,6209,7128,8203,9423,10786
%N A327725 Expansion of Product_{i>=1, j>=1}  (1 + x^(i*prime(j))).
%C A327725 Weigh transform of A001221.
%F A327725 G.f.: Product_{k>=1} (1 + x^k)^A001221(k).
%t A327725 nmax = 52; CoefficientList[Series[Product[(1 + x^k)^PrimeNu[k], {k, 1, nmax}], {x, 0, nmax}], x]
%t A327725 a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d PrimeNu[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 52}]
%o A327725 (PARI) seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^omega(k)))} \\ _Andrew Howroyd_, Sep 23 2019
%Y A327725 Cf. A001221, A293548.
%K A327725 nonn
%O A327725 0,6
%A A327725 _Ilya Gutkovskiy_, Sep 23 2019