This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327737 #24 Sep 23 2019 21:11:52 %S A327737 1,4,7,11,14,17,20,24,28,31,34,37,40,43,46,51,54,57,60,63,66,69,72,75, %T A327737 79,82,86,89,92,95,98,102,105,108,111,115,118,121,124,127,130,133,136, %U A327737 139,142,145,148,151,155,158,161,164,167,170,173,176,179,182,185 %N A327737 a(n) is the sum of the lengths of the base-b expansions of n for all b with 1 <= b <= n. %F A327737 a(n) = A043000(n) + n. - _A.H.M. Smeets_, Sep 23 2019 %e A327737 a(5) = 14 because 5 has the following representations in bases 1 to 5: 11111, 101, 12, 11, 10 giving a total length of 5+3+2+2+2 = 14. %e A327737 a(12) = 37 because 12 in bases 1 through 12 is 1...1 (12 1's), 1100, 110, and for bases 4 through 12 we get a 2-digit number, for a total length of 12+4+3+9*2 = 37. - _N. J. A. Sloane_, Sep 23 2019 %o A327737 (Go) %o A327737 package main %o A327737 import ( %o A327737 "fmt" %o A327737 "strconv" %o A327737 ) %o A327737 func main() { %o A327737 // Due to limitations in strconv, this will only work for the first 36 terms %o A327737 for i := 1; i <= 36; i++ { %o A327737 count := i %o A327737 for base := 2; base <= i; base++ { %o A327737 count += len(strconv.FormatInt(int64(i), base)) %o A327737 } %o A327737 fmt.Printf("%d, ", count) %o A327737 } %o A327737 } %o A327737 (PARI) a(n) = my(i=n); for(b=2, n, i+=#digits(n, b)); i \\ _Felix Fröhlich_, Sep 23 2019 %o A327737 (Python) %o A327737 def count(n,b): %o A327737 c = 0 %o A327737 while n > 0: %o A327737 n, c = n//b, c+1 %o A327737 return c %o A327737 n = 0 %o A327737 while n < 60: %o A327737 n = n+1 %o A327737 a, b = n, 1 %o A327737 while b < n: %o A327737 b = b+1 %o A327737 a = a + count(n,b) %o A327737 print(n,a) # _A.H.M. Smeets_, Sep 23 2019 %Y A327737 Cf. A043000. %K A327737 nonn,base %O A327737 1,2 %A A327737 _Steve Engledow_, Sep 23 2019 %E A327737 More terms from _Felix Fröhlich_, Sep 23 2019