This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327738 #7 Sep 27 2019 15:16:52 %S A327738 1,1,2,4,9,18,37,76,158,326,672,1386,2862,5906,12187,25148,51900, %T A327738 107103,221023,456110,941256,1942423,4008481,8272094,17070712, %U A327738 35227975,72698206,150023632,309596255,638898274,1318462339,2720844607,5614870612,11587126980 %N A327738 Expansion of 1 / (1 - Sum_{i>=1, j>=1} x^(i*j^2)). %C A327738 Invert transform of A046951. %H A327738 Alois P. Heinz, <a href="/A327738/b327738.txt">Table of n, a(n) for n = 0..1000</a> %F A327738 G.f.: 1 / (1 - Sum_{k>=1} x^(k^2) / (1 - x^(k^2))). %F A327738 G.f.: 1 / (1 - Sum_{k>=1} (theta_3(x^k) - 1) / 2), where theta_() is the Jacobi theta function. %F A327738 a(0) = 1; a(n) = Sum_{k=1..n} A046951(k) * a(n-k). %p A327738 a:= proc(n) option remember; `if`(n<1, 1, add(a(n-i)* %p A327738 nops(select(issqr, numtheory[divisors](i))), i=1..n)) %p A327738 end: %p A327738 seq(a(n), n=0..35); # _Alois P. Heinz_, Sep 23 2019 %t A327738 nmax = 33; CoefficientList[Series[1/(1 - Sum[x^(k^2)/(1 - x^(k^2)), {k, 1, Floor[Sqrt[nmax]] + 1}]), {x, 0, nmax}], x] %t A327738 a[0] = 1; a[n_] := a[n] = Sum[Length[Select[Divisors[k], IntegerQ[Sqrt[#]] &]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}] %Y A327738 Cf. A004101, A046951, A129921, A280451. %K A327738 nonn %O A327738 0,3 %A A327738 _Ilya Gutkovskiy_, Sep 23 2019