cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327741 Terms of A002496 that are the average of two distinct terms of A002496.

This page as a plain text file.
%I A327741 #19 May 08 2021 08:29:12
%S A327741 101,21317,24337,462401,1073297,1123601,1263377,1887877,1943237,
%T A327741 2446097,2604997,2890001,3422501,4202501,4343057,5354597,6330257,
%U A327741 7862417,8386817,8410001,9156677,10536517,10719077,11383877,12068677,12110401,12503297,16273157,18062501,19219457,21771557,22429697
%N A327741 Terms of A002496 that are the average of two distinct terms of A002496.
%C A327741 Primes of the form x^2+1 such that 2*x^2=y^2+z^2 where y^2+1 and z^2+1 are primes.
%C A327741 Some terms of the sequence are the average of more than one pair of terms of A002496. E.g., 2890001 = (115601 + 5664401)/2 = (2016401 + 3763601)/2, while 5354597 = (42437 + 10666757)/2 = (1136357 + 9572837)/2 = (1552517 + 9156677)/2.
%C A327741 Primes of the form u^2*(s^2 + t^2)^2 + 1 where u^2*(s^2 + 2*s*t - t^2)^2 + 1 and u^2*(-s^2 + 2*s*t + t^2)^2 + 1 are prime, (sqrt(2) - 1)*s < t < s. The generalized Bunyakovsky conjecture implies there are infinitely many terms for each such pair (s,t).
%H A327741 Robert Israel, <a href="/A327741/b327741.txt">Table of n, a(n) for n = 1..1055</a>
%e A327741 a(3)=24337 is in the sequence because 24337=(7057+41617)/2 with 7057, 24337 and 41617 all terms of A002496, i.e., they are primes and 7057=84^2+1, 24337=156^2+1 and 41617=204^2+1.
%p A327741 N:= 10^8: # to get terms <= N
%p A327741 P:= select(isprime, [seq(x^2+1, x=2..floor(sqrt(N-1)),2)]):
%p A327741 nP:= nops(P):
%p A327741 R:= NULL:
%p A327741 for i from 1 to nP do
%p A327741   x:= P[i];
%p A327741   for j from 1 to i-1 do
%p A327741     z:= 2*x-P[j];
%p A327741     if issqr(z-1) and isprime(z) then R:= R, x; break fi
%p A327741   od
%p A327741 od:
%p A327741 R;
%Y A327741 Cf. A002496.
%K A327741 nonn
%O A327741 1,1
%A A327741 _J. M. Bergot_ and _Robert Israel_, Sep 23 2019