This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327741 #19 May 08 2021 08:29:12 %S A327741 101,21317,24337,462401,1073297,1123601,1263377,1887877,1943237, %T A327741 2446097,2604997,2890001,3422501,4202501,4343057,5354597,6330257, %U A327741 7862417,8386817,8410001,9156677,10536517,10719077,11383877,12068677,12110401,12503297,16273157,18062501,19219457,21771557,22429697 %N A327741 Terms of A002496 that are the average of two distinct terms of A002496. %C A327741 Primes of the form x^2+1 such that 2*x^2=y^2+z^2 where y^2+1 and z^2+1 are primes. %C A327741 Some terms of the sequence are the average of more than one pair of terms of A002496. E.g., 2890001 = (115601 + 5664401)/2 = (2016401 + 3763601)/2, while 5354597 = (42437 + 10666757)/2 = (1136357 + 9572837)/2 = (1552517 + 9156677)/2. %C A327741 Primes of the form u^2*(s^2 + t^2)^2 + 1 where u^2*(s^2 + 2*s*t - t^2)^2 + 1 and u^2*(-s^2 + 2*s*t + t^2)^2 + 1 are prime, (sqrt(2) - 1)*s < t < s. The generalized Bunyakovsky conjecture implies there are infinitely many terms for each such pair (s,t). %H A327741 Robert Israel, <a href="/A327741/b327741.txt">Table of n, a(n) for n = 1..1055</a> %e A327741 a(3)=24337 is in the sequence because 24337=(7057+41617)/2 with 7057, 24337 and 41617 all terms of A002496, i.e., they are primes and 7057=84^2+1, 24337=156^2+1 and 41617=204^2+1. %p A327741 N:= 10^8: # to get terms <= N %p A327741 P:= select(isprime, [seq(x^2+1, x=2..floor(sqrt(N-1)),2)]): %p A327741 nP:= nops(P): %p A327741 R:= NULL: %p A327741 for i from 1 to nP do %p A327741 x:= P[i]; %p A327741 for j from 1 to i-1 do %p A327741 z:= 2*x-P[j]; %p A327741 if issqr(z-1) and isprime(z) then R:= R, x; break fi %p A327741 od %p A327741 od: %p A327741 R; %Y A327741 Cf. A002496. %K A327741 nonn %O A327741 1,1 %A A327741 _J. M. Bergot_ and _Robert Israel_, Sep 23 2019