cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327749 Natural numbers whose sum of prime factors (with repetition) is palindromic in base 10.

This page as a plain text file.
%I A327749 #31 Sep 08 2022 08:46:24
%S A327749 1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,18,20,24,27,28,40,45,48,54,57,62,
%T A327749 85,101,102,106,116,121,123,131,151,181,182,191,194,218,259,260,278,
%U A327749 292,298,305,308,312,313,351,353,358,366,370,373,383,388,403,413,415,428,440,444,483,495,498
%N A327749 Natural numbers whose sum of prime factors (with repetition) is palindromic in base 10.
%C A327749 Union of 1, A046352 and the palindromic primes (A002385). - Corrected by _Robert Israel_, Nov 20 2020
%D A327749 Karl G. Kröber, "Palindrome, Perioden und Chaoten: 66 Streifzüge durch die palindromischen Gefilde" (1997, Deutsch-Taschenbücher; Bd. 99) ISBN 3-8171-1522-9.
%D A327749 Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.
%H A327749 Robert Israel, <a href="/A327749/b327749.txt">Table of n, a(n) for n = 1..10000</a>
%p A327749 ispali:= proc(n) option remember; local L; L:= convert(n,base,10); evalb(L = ListTools:-Reverse(L)) end proc:
%p A327749 spf:= proc(n) add(t[1]*t[2],t=ifactors(n)[2]) end proc:
%p A327749 select(t -> ispali(spf(t)), [$0..1000]); # _Robert Israel_, Nov 20 2020
%t A327749 sopfr[1] = 0; sopfr[n_] := Plus @@ (Times @@@ FactorInteger[n]); aQ[n_] := PalindromeQ[sopfr[n]]; Select[Range[500], aQ] (* _Amiram Eldar_, Sep 23 2019 *)
%o A327749 (PARI) sopfr(n) = (n=factor(n))[, 1]~*n[, 2]; \\ A001414
%o A327749 isok(n) = my(d=digits(sopfr(n))); d == Vecrev(d); \\ _Michel Marcus_, Sep 27 2019
%o A327749 (Magma) [1] cat [k: k in [2..500]| Intseq(a) eq Reverse(Intseq(a)) where a is &+[m[1]*m[2]: m in Factorization(k)]]; // _Marius A. Burtea_, Sep 27 2019
%Y A327749 Cf. A001414, A002113, A002385, A046352, A046355.
%K A327749 nonn,base
%O A327749 1,2
%A A327749 _Robert Bilinski_, Sep 23 2019