cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327758 Expansion of Product_{k>=1} 1/(1 - x^k)^(3/k), where (m/n) is the Kronecker symbol.

This page as a plain text file.
%I A327758 #23 Feb 16 2025 08:33:58
%S A327758 1,1,0,0,1,0,-1,-1,-1,-1,0,1,1,2,3,2,1,0,-2,-4,-4,-4,-3,0,3,5,6,7,4,0,
%T A327758 -4,-8,-12,-11,-6,-2,4,12,17,16,12,4,-8,-17,-22,-24,-20,-6,11,24,34,
%U A327758 36,29,12,-10,-33,-47,-50,-40,-18,13,44,66,72,59,27,-16,-58,-89,-100,-84,-41
%N A327758 Expansion of Product_{k>=1} 1/(1 - x^k)^(3/k), where (m/n) is the Kronecker symbol.
%H A327758 Seiichi Manyama, <a href="/A327758/b327758.txt">Table of n, a(n) for n = 0..1000</a>
%H A327758 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KroneckerSymbol.html">Kronecker Symbol</a>
%o A327758 (PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-x^k)^kronecker(3, k)))
%Y A327758 Convolution inverse of A327757.
%Y A327758 Product_{k>=1} 1/(1 - x^k)^(b/k): A111374 (b=2), A000009 (b=4), A003823 (b=5), A214157 (b=13).
%Y A327758 Cf. A091338,
%K A327758 sign,look
%O A327758 0,14
%A A327758 _Seiichi Manyama_, Sep 24 2019