This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327773 #18 Apr 12 2025 06:30:10 %S A327773 0,6,3,3,2,7,8,0,4,3,8,6,8,0,5,1,1,2,4,8,0,3,1,0,7,2,6,0,0,2,8,3,9,5, %T A327773 8,9,9,2,8,4,9,9,9,2,7,9,7,3,4,2,2,5,7,0,0,7,7,1,1,7,0,1,8,2,8,8,3,9, %U A327773 0,6,4,0,4,3,7,9,5,5,1,6,9,7,8,6,3,9,7,2,8,4,2,7,8,5,7,3,9,4,0,5,4,6,0,6,8,0 %N A327773 Decimal expansion of Sum_{k>=1} 1/(k*(k+1))^4. %C A327773 Sum_{k>=1} 1/(k*(k+1)) = 1 %C A327773 Sum_{k>=1} 1/(k*(k+1))^2 = -3 + Pi^2/3 %C A327773 Sum_{k>=1} 1/(k*(k+1))^3 = 10 - Pi^2 %C A327773 Sum_{k>=1} 1/(k*(k+1))^4 = -35 + 10*Pi^2/3 + Pi^4/45 %C A327773 Sum_{k>=1} 1/(k*(k+1))^5 = 126 - 35*Pi^2/3 - Pi^4/9 %C A327773 Sum_{k>=1} 1/(k*(k+1))^6 = -462 + 42*Pi^2 + 7*Pi^4/15 + 2*Pi^6/945 %C A327773 Sum_{k>=1} 1/(k*(k+1))^7 = 1716 - 154*Pi^2 - 28*Pi^4/15 - 2*Pi^6/135 %C A327773 Sum_{k>=1} 1/(k*(k+1))^8 = -6435 + 572*Pi^2 + 22*Pi^4/3 + 8*Pi^6/105 + Pi^8/4725 %C A327773 Sum_{k>=1} 1/(k*(k+1))^9 = 24310 - 2145*Pi^2 - 143*Pi^4/5 - 22*Pi^6/63 - Pi^8/525 %C A327773 Sum_{k>=1} 1/(k*(k+1))^10 = -92378 + 24310*Pi^2/3 + 1001*Pi^4/9 + 286*Pi^6/189 + 11*Pi^8/945 + 2*Pi^10/93555 %C A327773 In general, for s > 1, Sum_{k>=1} 1/(k*(k+1))^s = (-1)^s * (-binomial(2*s-1, s-1) + Sum_{j=1..floor(s/2)} (-1)^(j+1) * binomial(2*s-2*j-1, s-1) * Bernoulli(2*j) * (2*Pi)^(2*j) / (2*j)!). %C A327773 Equivalently, for s > 1, Sum_{k>=1} 1/(k*(k+1))^s = (-1)^s * (-binomial(2*s-1, s-1) + 2*Sum_{j=1..floor(s/2)} binomial(2*s-2*j-1, s-1) * zeta(2*j)). %H A327773 R. J. Mathar, <a href="https://arxiv.org/abs/1301.6293">Tighly circumscribed regular polygons</a>, arXiv:1301.6293 [math.MG], 2013, see Appendix. %H A327773 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BernoulliNumber.html">Bernoulli Number</a> %H A327773 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann zeta function</a> %F A327773 Equals Pi^4/45 + 10*Pi^2/3 - 35. %e A327773 0.06332780438680511248031072600283958992849992797342257007711701828839... %p A327773 evalf(sum(1/(k*(k+1))^4, k=1..infinity), 120); %t A327773 RealDigits[N[Sum[1/(k*(k + 1))^4, {k, 1, Infinity}], 105]][[1]] %o A327773 (PARI) suminf(k=1, 1/(k*(k+1))^4) %Y A327773 Cf. A145426, A248619. %K A327773 nonn,cons %O A327773 0,2 %A A327773 _Vaclav Kotesovec_, Sep 25 2019