cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327775 Heinz numbers of integer partitions whose LCM is twice their sum.

This page as a plain text file.
%I A327775 #9 Sep 27 2019 15:51:19
%S A327775 154,190,435,580,714,952,1118,1287,1430,1653,1716,1815,1935,2067,2150,
%T A327775 2204,2254,2288,2415,2475,2580,2756,2898,2970,3220,3300,3440,3710,
%U A327775 3864,3960,3975,4770,5152,5280,5300,6360,6461,6897,7514,8307,8480,8619,8695,8778
%N A327775 Heinz numbers of integer partitions whose LCM is twice their sum.
%C A327775 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A327775 Alois P. Heinz, <a href="/A327775/b327775.txt">Table of n, a(n) for n = 1..1000</a>
%F A327775 A290103(a(k)) = 2 * A056239(a(k)).
%e A327775 The sequence of terms together with their prime indices begins:
%e A327775    154: {1,4,5}
%e A327775    190: {1,3,8}
%e A327775    435: {2,3,10}
%e A327775    580: {1,1,3,10}
%e A327775    714: {1,2,4,7}
%e A327775    952: {1,1,1,4,7}
%e A327775   1118: {1,6,14}
%e A327775   1287: {2,2,5,6}
%e A327775   1430: {1,3,5,6}
%e A327775   1653: {2,8,10}
%e A327775   1716: {1,1,2,5,6}
%e A327775   1815: {2,3,5,5}
%e A327775   1935: {2,2,3,14}
%e A327775   2067: {2,6,16}
%e A327775   2150: {1,3,3,14}
%e A327775   2204: {1,1,8,10}
%e A327775   2254: {1,4,4,9}
%e A327775   2288: {1,1,1,1,5,6}
%e A327775   2415: {2,3,4,9}
%e A327775   2475: {2,2,3,3,5}
%p A327775 q:= n-> (l-> is(ilcm(l[])=2*add(j, j=l)))(map(i->
%p A327775         numtheory[pi](i[1])$i[2], ifactors(n)[2])):
%p A327775 select(q, [$1..10000])[];  # _Alois P. Heinz_, Sep 27 2019
%t A327775 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A327775 Select[Range[2,1000],LCM@@primeMS[#]==2*Total[primeMS[#]]&]
%Y A327775 The enumeration of these partitions by sum is A327780.
%Y A327775 Heinz numbers of partitions whose LCM is less than their sum are A327776.
%Y A327775 Heinz numbers of partitions whose LCM is a multiple their sum are A327783.
%Y A327775 Heinz numbers of partitions whose LCM is greater than their sum are A327784.
%Y A327775 Cf. A056239, A074761, A112798, A290103, A326841 , A327778.
%K A327775 nonn
%O A327775 1,1
%A A327775 _Gus Wiseman_, Sep 25 2019