This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327775 #9 Sep 27 2019 15:51:19 %S A327775 154,190,435,580,714,952,1118,1287,1430,1653,1716,1815,1935,2067,2150, %T A327775 2204,2254,2288,2415,2475,2580,2756,2898,2970,3220,3300,3440,3710, %U A327775 3864,3960,3975,4770,5152,5280,5300,6360,6461,6897,7514,8307,8480,8619,8695,8778 %N A327775 Heinz numbers of integer partitions whose LCM is twice their sum. %C A327775 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A327775 Alois P. Heinz, <a href="/A327775/b327775.txt">Table of n, a(n) for n = 1..1000</a> %F A327775 A290103(a(k)) = 2 * A056239(a(k)). %e A327775 The sequence of terms together with their prime indices begins: %e A327775 154: {1,4,5} %e A327775 190: {1,3,8} %e A327775 435: {2,3,10} %e A327775 580: {1,1,3,10} %e A327775 714: {1,2,4,7} %e A327775 952: {1,1,1,4,7} %e A327775 1118: {1,6,14} %e A327775 1287: {2,2,5,6} %e A327775 1430: {1,3,5,6} %e A327775 1653: {2,8,10} %e A327775 1716: {1,1,2,5,6} %e A327775 1815: {2,3,5,5} %e A327775 1935: {2,2,3,14} %e A327775 2067: {2,6,16} %e A327775 2150: {1,3,3,14} %e A327775 2204: {1,1,8,10} %e A327775 2254: {1,4,4,9} %e A327775 2288: {1,1,1,1,5,6} %e A327775 2415: {2,3,4,9} %e A327775 2475: {2,2,3,3,5} %p A327775 q:= n-> (l-> is(ilcm(l[])=2*add(j, j=l)))(map(i-> %p A327775 numtheory[pi](i[1])$i[2], ifactors(n)[2])): %p A327775 select(q, [$1..10000])[]; # _Alois P. Heinz_, Sep 27 2019 %t A327775 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A327775 Select[Range[2,1000],LCM@@primeMS[#]==2*Total[primeMS[#]]&] %Y A327775 The enumeration of these partitions by sum is A327780. %Y A327775 Heinz numbers of partitions whose LCM is less than their sum are A327776. %Y A327775 Heinz numbers of partitions whose LCM is a multiple their sum are A327783. %Y A327775 Heinz numbers of partitions whose LCM is greater than their sum are A327784. %Y A327775 Cf. A056239, A074761, A112798, A290103, A326841 , A327778. %K A327775 nonn %O A327775 1,1 %A A327775 _Gus Wiseman_, Sep 25 2019