cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327777 Prime numbers whose binary indices have integer mean and integer geometric mean.

This page as a plain text file.
%I A327777 #16 Dec 13 2019 18:50:37
%S A327777 2,257,8519971,36574494881,140739702949921,140773995710729,
%T A327777 140774004099109
%N A327777 Prime numbers whose binary indices have integer mean and integer geometric mean.
%C A327777 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%C A327777 Conjecture: This sequence is infinite.
%H A327777 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a>
%e A327777 The initial terms together with their binary indices:
%e A327777                 2: {2}
%e A327777               257: {1,9}
%e A327777           8519971: {1,2,6,9,18,24}
%e A327777       36574494881: {1,6,8,16,18,27,32,36}
%e A327777   140739702949921: {1,6,12,27,32,48}
%e A327777   140773995710729: {1,4,9,12,18,32,36,48}
%e A327777   140774004099109: {1,3,6,12,18,24,32,36,48}
%t A327777 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t A327777 Select[Prime[Range[1000]],IntegerQ[Mean[bpe[#]]]&&IntegerQ[GeometricMean[bpe[#]]]&]
%Y A327777 A subset of A327368.
%Y A327777 The binary weight of prime(n) is A014499(n), with binary length A035100(n).
%Y A327777 Heinz numbers of partitions with integer mean: A316413.
%Y A327777 Heinz numbers of partitions with integer geometric mean: A326623.
%Y A327777 Heinz numbers with both: A326645.
%Y A327777 Subsets with integer mean: A051293
%Y A327777 Subsets with integer geometric mean: A326027
%Y A327777 Subsets with both: A326643
%Y A327777 Partitions with integer mean: A067538
%Y A327777 Partitions with integer geometric mean: A067539
%Y A327777 Partitions with both: A326641
%Y A327777 Strict partitions with integer mean: A102627
%Y A327777 Strict partitions with integer geometric mean: A326625
%Y A327777 Strict partitions with both: A326029
%Y A327777 Factorizations with integer mean: A326622
%Y A327777 Factorizations with integer geometric mean: A326028
%Y A327777 Factorizations with both: A326647
%Y A327777 Numbers whose binary indices have integer mean: A326669
%Y A327777 Numbers whose binary indices have integer geometric mean: A326673
%Y A327777 Numbers whose binary indices have both: A327368
%Y A327777 Cf. A000120, A029931, A034797, A048793, A070939, A096111, A291166, A326031, A326644, A326699/A326700.
%K A327777 nonn,more
%O A327777 1,1
%A A327777 _Gus Wiseman_, Sep 27 2019
%E A327777 a(4)-a(7) from _Giovanni Resta_, Dec 01 2019