This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327777 #16 Dec 13 2019 18:50:37 %S A327777 2,257,8519971,36574494881,140739702949921,140773995710729, %T A327777 140774004099109 %N A327777 Prime numbers whose binary indices have integer mean and integer geometric mean. %C A327777 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A327777 Conjecture: This sequence is infinite. %H A327777 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a> %e A327777 The initial terms together with their binary indices: %e A327777 2: {2} %e A327777 257: {1,9} %e A327777 8519971: {1,2,6,9,18,24} %e A327777 36574494881: {1,6,8,16,18,27,32,36} %e A327777 140739702949921: {1,6,12,27,32,48} %e A327777 140773995710729: {1,4,9,12,18,32,36,48} %e A327777 140774004099109: {1,3,6,12,18,24,32,36,48} %t A327777 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A327777 Select[Prime[Range[1000]],IntegerQ[Mean[bpe[#]]]&&IntegerQ[GeometricMean[bpe[#]]]&] %Y A327777 A subset of A327368. %Y A327777 The binary weight of prime(n) is A014499(n), with binary length A035100(n). %Y A327777 Heinz numbers of partitions with integer mean: A316413. %Y A327777 Heinz numbers of partitions with integer geometric mean: A326623. %Y A327777 Heinz numbers with both: A326645. %Y A327777 Subsets with integer mean: A051293 %Y A327777 Subsets with integer geometric mean: A326027 %Y A327777 Subsets with both: A326643 %Y A327777 Partitions with integer mean: A067538 %Y A327777 Partitions with integer geometric mean: A067539 %Y A327777 Partitions with both: A326641 %Y A327777 Strict partitions with integer mean: A102627 %Y A327777 Strict partitions with integer geometric mean: A326625 %Y A327777 Strict partitions with both: A326029 %Y A327777 Factorizations with integer mean: A326622 %Y A327777 Factorizations with integer geometric mean: A326028 %Y A327777 Factorizations with both: A326647 %Y A327777 Numbers whose binary indices have integer mean: A326669 %Y A327777 Numbers whose binary indices have integer geometric mean: A326673 %Y A327777 Numbers whose binary indices have both: A327368 %Y A327777 Cf. A000120, A029931, A034797, A048793, A070939, A096111, A291166, A326031, A326644, A326699/A326700. %K A327777 nonn,more %O A327777 1,1 %A A327777 _Gus Wiseman_, Sep 27 2019 %E A327777 a(4)-a(7) from _Giovanni Resta_, Dec 01 2019