This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327779 #9 Oct 16 2019 13:14:28 %S A327779 1,0,0,0,0,1,0,2,3,7,9,18,16,31,42,61,87,133,169,246,302,411,545,738, %T A327779 874,1167,1497,1945,2421,3110,3498,4476,5615,7061,8777,10925,12957, %U A327779 16036,19644,24061,28858,35177,41572,50424,60643,72953,87499,104893,123821,147776 %N A327779 Number of integer partitions of n whose LCM is greater than n. %e A327779 The a(5) = 1 through a(12) = 16 partitions (empty columns not shown): %e A327779 (32) (43) (53) (54) (64) (65) (75) %e A327779 (52) (431) (72) (73) (74) (543) %e A327779 (521) (432) (433) (83) (651) %e A327779 (522) (532) (92) (732) %e A327779 (531) (541) (443) (741) %e A327779 (4311) (721) (533) (831) %e A327779 (5211) (4321) (542) (921) %e A327779 (5311) (641) (5322) %e A327779 (43111) (722) (5331) %e A327779 (731) (5421) %e A327779 (4322) (7221) %e A327779 (4331) (7311) %e A327779 (5321) (53211) %e A327779 (5411) (54111) %e A327779 (7211) (72111) %e A327779 (43211) (531111) %e A327779 (53111) %e A327779 (431111) %t A327779 Table[Length[Select[IntegerPartitions[n],LCM@@#>n&]],{n,30}] %Y A327779 The Heinz numbers of these partitions are given by A327784. %Y A327779 Partitions whose LCM is a multiple of their sum are A327778. %Y A327779 Partitions whose LCM is equal to their sum are A074761. %Y A327779 Partitions whose LCM is less than their sum are A327781. %Y A327779 Cf. A018818, A067538, A290103, A326842, A327780, A327783. %K A327779 nonn %O A327779 0,8 %A A327779 _Gus Wiseman_, Sep 25 2019