cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327779 Number of integer partitions of n whose LCM is greater than n.

This page as a plain text file.
%I A327779 #9 Oct 16 2019 13:14:28
%S A327779 1,0,0,0,0,1,0,2,3,7,9,18,16,31,42,61,87,133,169,246,302,411,545,738,
%T A327779 874,1167,1497,1945,2421,3110,3498,4476,5615,7061,8777,10925,12957,
%U A327779 16036,19644,24061,28858,35177,41572,50424,60643,72953,87499,104893,123821,147776
%N A327779 Number of integer partitions of n whose LCM is greater than n.
%e A327779 The a(5) = 1 through a(12) = 16 partitions (empty columns not shown):
%e A327779   (32)  (43)  (53)   (54)    (64)     (65)      (75)
%e A327779         (52)  (431)  (72)    (73)     (74)      (543)
%e A327779               (521)  (432)   (433)    (83)      (651)
%e A327779                      (522)   (532)    (92)      (732)
%e A327779                      (531)   (541)    (443)     (741)
%e A327779                      (4311)  (721)    (533)     (831)
%e A327779                      (5211)  (4321)   (542)     (921)
%e A327779                              (5311)   (641)     (5322)
%e A327779                              (43111)  (722)     (5331)
%e A327779                                       (731)     (5421)
%e A327779                                       (4322)    (7221)
%e A327779                                       (4331)    (7311)
%e A327779                                       (5321)    (53211)
%e A327779                                       (5411)    (54111)
%e A327779                                       (7211)    (72111)
%e A327779                                       (43211)   (531111)
%e A327779                                       (53111)
%e A327779                                       (431111)
%t A327779 Table[Length[Select[IntegerPartitions[n],LCM@@#>n&]],{n,30}]
%Y A327779 The Heinz numbers of these partitions are given by A327784.
%Y A327779 Partitions whose LCM is a multiple of their sum are A327778.
%Y A327779 Partitions whose LCM is equal to their sum are A074761.
%Y A327779 Partitions whose LCM is less than their sum are A327781.
%Y A327779 Cf. A018818, A067538, A290103, A326842, A327780, A327783.
%K A327779 nonn
%O A327779 0,8
%A A327779 _Gus Wiseman_, Sep 25 2019