cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327780 Number of integer partitions of n whose LCM is 2 * n.

This page as a plain text file.
%I A327780 #14 Feb 12 2022 20:28:57
%S A327780 0,0,0,0,0,0,0,0,0,0,1,0,1,0,2,12,0,0,6,0,10,32,6,0,8,0,9,0,32,0,505,
%T A327780 0,0,108,16,147,258,0,20,170,134,0,2030,0,140,1865,30,0,80,0,105,350,
%U A327780 236,0,419,500,617,474,49,0,40966,0,56,8225,0,785
%N A327780 Number of integer partitions of n whose LCM is 2 * n.
%H A327780 Andrew Howroyd, <a href="/A327780/b327780.txt">Table of n, a(n) for n = 0..1000</a>
%F A327780 a(n) = Sum_{d|2*n} mu(d)*([x^n] B(2*n/d, x)) for n > 0, where B(m,x) = 1/(Product_{d|m} 1 - x^d). - _Andrew Howroyd_, Feb 12 2022
%e A327780 The a(10) = 1 through a(20) = 10 partitions (A = 10) (empty columns not shown):
%e A327780   (541)  (831)  (7421)   (A32)       (9432)     (A82)
%e A327780                 (74111)  (5532)      (9441)     (8552)
%e A327780                          (6522)      (94221)    (A811)
%e A327780                          (6531)      (94311)    (85421)
%e A327780                          (A311)      (942111)   (85511)
%e A327780                          (53322)     (9411111)  (852221)
%e A327780                          (65211)                (854111)
%e A327780                          (532221)               (8522111)
%e A327780                          (533211)               (85211111)
%e A327780                          (651111)               (851111111)
%e A327780                          (5322111)
%e A327780                          (53211111)
%t A327780 Table[Length[Select[IntegerPartitions[n],LCM@@#==2*n&]],{n,30}]
%o A327780 (PARI)
%o A327780 b(m,n)={my(d=divisors(m)); polcoef(1/prod(i=1, #d, 1 - x^d[i] + O(x*x^n)), n)}
%o A327780 a(n)={if(n<1, 0, sumdiv(2*n, d, moebius(d)*b(2*n/d, n)))} \\ _Andrew Howroyd_, Oct 09 2019
%Y A327780 The Heinz numbers of these partitions are given by A327775.
%Y A327780 Partitions whose LCM is a multiple of their sum are A327778.
%Y A327780 Partitions whose LCM is equal to their sum are A074761.
%Y A327780 Partitions whose LCM is greater than their sum are A327779.
%Y A327780 Partitions whose LCM is less than their sum are A327781.
%Y A327780 Cf. A018818, A290103, A316413, A326842.
%K A327780 nonn
%O A327780 0,15
%A A327780 _Gus Wiseman_, Sep 25 2019