This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327780 #14 Feb 12 2022 20:28:57 %S A327780 0,0,0,0,0,0,0,0,0,0,1,0,1,0,2,12,0,0,6,0,10,32,6,0,8,0,9,0,32,0,505, %T A327780 0,0,108,16,147,258,0,20,170,134,0,2030,0,140,1865,30,0,80,0,105,350, %U A327780 236,0,419,500,617,474,49,0,40966,0,56,8225,0,785 %N A327780 Number of integer partitions of n whose LCM is 2 * n. %H A327780 Andrew Howroyd, <a href="/A327780/b327780.txt">Table of n, a(n) for n = 0..1000</a> %F A327780 a(n) = Sum_{d|2*n} mu(d)*([x^n] B(2*n/d, x)) for n > 0, where B(m,x) = 1/(Product_{d|m} 1 - x^d). - _Andrew Howroyd_, Feb 12 2022 %e A327780 The a(10) = 1 through a(20) = 10 partitions (A = 10) (empty columns not shown): %e A327780 (541) (831) (7421) (A32) (9432) (A82) %e A327780 (74111) (5532) (9441) (8552) %e A327780 (6522) (94221) (A811) %e A327780 (6531) (94311) (85421) %e A327780 (A311) (942111) (85511) %e A327780 (53322) (9411111) (852221) %e A327780 (65211) (854111) %e A327780 (532221) (8522111) %e A327780 (533211) (85211111) %e A327780 (651111) (851111111) %e A327780 (5322111) %e A327780 (53211111) %t A327780 Table[Length[Select[IntegerPartitions[n],LCM@@#==2*n&]],{n,30}] %o A327780 (PARI) %o A327780 b(m,n)={my(d=divisors(m)); polcoef(1/prod(i=1, #d, 1 - x^d[i] + O(x*x^n)), n)} %o A327780 a(n)={if(n<1, 0, sumdiv(2*n, d, moebius(d)*b(2*n/d, n)))} \\ _Andrew Howroyd_, Oct 09 2019 %Y A327780 The Heinz numbers of these partitions are given by A327775. %Y A327780 Partitions whose LCM is a multiple of their sum are A327778. %Y A327780 Partitions whose LCM is equal to their sum are A074761. %Y A327780 Partitions whose LCM is greater than their sum are A327779. %Y A327780 Partitions whose LCM is less than their sum are A327781. %Y A327780 Cf. A018818, A290103, A316413, A326842. %K A327780 nonn %O A327780 0,15 %A A327780 _Gus Wiseman_, Sep 25 2019