This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327783 #4 Oct 16 2019 13:09:53 %S A327783 2,3,5,7,11,13,17,19,23,29,30,31,37,41,43,47,53,59,61,67,71,73,79,83, %T A327783 89,97,101,103,107,109,113,127,131,137,139,149,151,154,157,163,165, %U A327783 167,173,179,181,190,191,193,197,198,199,211,223,227,229,233,239,241 %N A327783 Heinz numbers of integer partitions whose LCM is a multiple of their sum. %C A327783 First differs from A319333 in having 154. %C A327783 First nonsquarefree term is 198. %C A327783 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %F A327783 A056239(a(k)) | A290103(a(k)). %e A327783 The sequence of terms together with their prime indices begins: %e A327783 2: {1} %e A327783 3: {2} %e A327783 5: {3} %e A327783 7: {4} %e A327783 11: {5} %e A327783 13: {6} %e A327783 17: {7} %e A327783 19: {8} %e A327783 23: {9} %e A327783 29: {10} %e A327783 30: {1,2,3} %e A327783 31: {11} %e A327783 37: {12} %e A327783 41: {13} %e A327783 43: {14} %e A327783 47: {15} %e A327783 53: {16} %e A327783 59: {17} %e A327783 61: {18} %e A327783 67: {19} %t A327783 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A327783 Select[Range[2,100],Divisible[LCM@@primeMS[#],Total[primeMS[#]]]&] %Y A327783 The enumeration of these partitions by sum is A327778. %Y A327783 Heinz numbers of partitions whose LCM is twice their sum are A327775. %Y A327783 Heinz numbers of partitions whose LCM is less than their sum are A327776. %Y A327783 Heinz numbers of partitions whose LCM is greater than their sum are A327784. %Y A327783 Cf. A056239, A074761, A112798, A290103, A316413, A326841, A327779. %K A327783 nonn %O A327783 1,1 %A A327783 _Gus Wiseman_, Sep 25 2019