This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327786 #28 Sep 08 2022 08:46:24 %S A327786 10,100,110,210,1000,1001,1010,1020,1100,1110,2010,2100,10000,10010, %T A327786 10020,10100,10101,10110,10200,11000,11010,11100,20010,20020,20100, %U A327786 21000,100000,100002,100010,100011,100020,100100,100110,100200,101000,101010,101100,102000 %N A327786 Numbers whose number of distinct prime factors is greater than the sum of their digits. %C A327786 The sequence is infinite since every number of the form 10^k for k >= 1 is in the sequence. It can be proved that 210 is the largest term with distinct digits. %H A327786 Giovanni Resta, <a href="/A327786/b327786.txt">Table of n, a(n) for n = 1..10000</a> (first 291 terms from Metin Sariyar) %e A327786 For a(4) = 210, 2 + 1 + 0 = 3, 210 = 2*3*5*7 with 4 distinct factors, 4 > 3 so 210 is a term. %t A327786 Select[Range[10^6], Total[IntegerDigits[#]]<Length[FactorInteger[#]]&] %t A327786 Select[Range[120000],PrimeNu[#]>Total[IntegerDigits[#]]&] (* _Harvey P. Dale_, Jul 07 2020 *) %o A327786 (PARI) isok(n) = omega(n) > sumdigits(n); \\ _Michel Marcus_, Sep 25 2019 %o A327786 (Magma) [k:k in [2..110000]| #PrimeDivisors(k) gt &+Intseq(k)]; // _Marius A. Burtea_, Oct 07 2019 %Y A327786 Cf. A001221, A165256. %K A327786 nonn,base %O A327786 1,1 %A A327786 _Metin Sariyar_, Sep 25 2019