A327792 a(n) is the greatest nonnegative number which has a partition into a triangular number (A000217), a square number (A000290), and a pentagonal number (A000326) in n different ways.
0, 18, 168, 78, 243, 130, 553, 455, 515, 658, 865, 945, 633, 1918, 2258, 1385, 1583, 2828, 2135, 2335, 2785, 4533, 3168, 3478, 2790, 3868, 4193, 7328, 4953, 5278, 6390, 8148, 8015, 4585, 9160, 10485, 7613, 12333, 12025, 10178, 9923, 9720, 12558, 11340, 17420, 11753, 14893, 16155, 16415, 14343, 18053, 19803, 16608, 27283
Offset: 1
Keywords
Examples
a(0) does not exist since all numbers can be represented as the sum of a triangular, square & pentagonal number.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
f[n_] := Block[{j, k = 1, lenq, lenr, v = {}, t = PolygonalNumber[3, Range[0, 1 + Sqrt[2 n]]], s = PolygonalNumber[4, Range[0, 1 + Sqrt[n]]], p = PolygonalNumber[5, Range[0, 2 + Sqrt[2 n/3]]]}, u = Select[Union[Join[t, s, p]], # < n + 1 &]; q = IntegerPartitions[n, {3}, u]; lenq = 1 + Length@q; While[k < lenq, j = 1; r = q[[k]]; rr = Permutations@r; lenr = 1 + Length@rr; While[j < lenr, If[ MemberQ[t, rr[[j, 1]]] && MemberQ[s, rr[[j, 2]]] && MemberQ[p, rr[[j, 3]]], AppendTo[v, rr[[j]]]]; j++]; k++]; Length@v];
Comments