cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327798 Expansion of 1 / (1 - Sum_{i>=1, j>=1} x^(i*(j + 1))).

This page as a plain text file.
%I A327798 #8 Jan 11 2023 07:47:25
%S A327798 1,0,1,1,3,3,9,10,25,34,72,106,215,330,635,1025,1899,3141,5713,9602,
%T A327798 17213,29292,51982,89149,157249,271027,476037,823386,1442063,2500015,
%U A327798 4370386,7588146,13248591,23026728,40169991,69865026,121811765,211954826,369412910
%N A327798 Expansion of 1 / (1 - Sum_{i>=1, j>=1} x^(i*(j + 1))).
%C A327798 Invert transform of A032741.
%H A327798 Robert Israel, <a href="/A327798/b327798.txt">Table of n, a(n) for n = 0..3000</a>
%F A327798 G.f.: 1 / (1 - Sum_{k>=1} x^(2*k) / (1 - x^k)).
%F A327798 a(0) = 1; a(n) = Sum_{k=1..n} A032741(k) * a(n-k).
%p A327798 N:= 100: # for a(0)..a(N)
%p A327798 G:= 1/(1-add(x^(2*k)/(1-x^k),k=1..(N+1)/2)):
%p A327798 S:= series(G,x,N+1):
%p A327798 seq(coeff(S,x,i),i=0..N); # _Robert Israel_, Jan 10 2023
%t A327798 nmax = 38; CoefficientList[Series[1/(1 - Sum[x^(2 k)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
%t A327798 a[0] = 1; a[n_] := a[n] = Sum[(DivisorSigma[0, k] - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 38}]
%Y A327798 Cf. A032741, A129921, A318783, A327739.
%K A327798 nonn
%O A327798 0,5
%A A327798 _Ilya Gutkovskiy_, Sep 25 2019