This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327801 #33 Apr 30 2020 07:19:04 %S A327801 1,1,1,3,2,1,10,9,3,1,47,40,18,4,1,246,235,100,30,5,1,1602,1476,705, %T A327801 200,45,6,1,11481,11214,5166,1645,350,63,7,1,95503,91848,44856,13776, %U A327801 3290,560,84,8,1,871030,859527,413316,134568,30996,5922,840,108,9,1 %N A327801 Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts incorporating k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A327801 Here we assume that every list of parts has at least one 0 because its addition does not change the value of the multinomial. %H A327801 Alois P. Heinz, <a href="/A327801/b327801.txt">Rows n = 0..140, flattened</a> %H A327801 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients">Multinomial coefficients</a> %H A327801 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %e A327801 Triangle T(n,k) begins: %e A327801 1; %e A327801 1, 1; %e A327801 3, 2, 1; %e A327801 10, 9, 3, 1; %e A327801 47, 40, 18, 4, 1; %e A327801 246, 235, 100, 30, 5, 1; %e A327801 1602, 1476, 705, 200, 45, 6, 1; %e A327801 11481, 11214, 5166, 1645, 350, 63, 7, 1; %e A327801 95503, 91848, 44856, 13776, 3290, 560, 84, 8, 1; %e A327801 ... %p A327801 with(combinat): %p A327801 T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0), l= %p A327801 select(x-> k=0 or k in x, partition(n))): %p A327801 seq(seq(T(n, k), k=0..n), n=0..10); %p A327801 # second Maple program: %p A327801 b:= proc(n, i, k) option remember; `if`(n=0, 1, %p A327801 `if`(i<2, 0, b(n, i-1, `if`(i=k, 0, k)))+ %p A327801 `if`(i=k, 0, b(n-i, min(n-i, i), k)/i!)) %p A327801 end: %p A327801 T:= (n, k)-> n!*(b(n$2, 0)-`if`(k=0, 0, b(n$2, k))): %p A327801 seq(seq(T(n, k), k=0..n), n=0..10); %t A327801 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 2, 0, b[n, i - 1, If[i == k, 0, k]]] + If[i == k, 0, b[n - i, Min[n - i, i], k]/i!]]; %t A327801 T[n_, k_] := n! (b[n, n, 0] - If[k == 0, 0, b[n, n, k]]); %t A327801 Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 30 2020, from 2nd Maple program *) %Y A327801 Columns k=0-2 give: A005651, A327827, A327828. %Y A327801 Row sums give A320566. %Y A327801 T(2n,n) gives A266518. %Y A327801 T(n,n-1) gives A001477. %Y A327801 T(n+1,n-1) gives A045943. %Y A327801 Cf. A327869. %K A327801 nonn,tabl %O A327801 0,4 %A A327801 _Alois P. Heinz_, Sep 25 2019