This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327803 #24 May 06 2020 12:23:47 %S A327803 1,0,1,0,3,0,7,3,0,31,16,0,121,125,0,831,711,60,0,5041,5915,525,0, %T A327803 42911,46264,6328,0,364561,438681,67788,0,3742453,4371085,753420, %U A327803 12600,0,39916801,49321745,8924685,166320,0,486891175,588219523,113501784,2966040 %N A327803 Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts that form a set of size k; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows. %H A327803 Alois P. Heinz, <a href="/A327803/b327803.txt">Rows n = 0..200, flattened</a> %H A327803 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients">Multinomial coefficients</a> %H A327803 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %F A327803 T(n*(n+1)/2,n) = T(A000217(n),n) = A022915(n). %e A327803 Triangle T(n,k) begins: %e A327803 1; %e A327803 0, 1; %e A327803 0, 3; %e A327803 0, 7, 3; %e A327803 0, 31, 16; %e A327803 0, 121, 125; %e A327803 0, 831, 711, 60; %e A327803 0, 5041, 5915, 525; %e A327803 0, 42911, 46264, 6328; %e A327803 0, 364561, 438681, 67788; %e A327803 0, 3742453, 4371085, 753420, 12600; %e A327803 ... %p A327803 with(combinat): %p A327803 T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0), l= %p A327803 select(x-> nops({x[]})=k, partition(n))): %p A327803 seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..14); %p A327803 # second Maple program: %p A327803 b:= proc(n, i) option remember; expand(`if`(n=0, 1, %p A327803 `if`(i<1, 0, add(x^signum(j)*b(n-i*j, i-1)* %p A327803 combinat[multinomial](n, n-i*j, i$j), j=0..n/i)))) %p A327803 end: %p A327803 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): %p A327803 seq(T(n), n=0..14); %t A327803 multinomial[n_, k_List] := n!/Times @@ (k!); %t A327803 b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[x^Sign[j]*b[n - i*j, i-1]*multinomial[n, Join[{n-i*j}, Table[i, {j}]]], {j, 0, n/i}]]]]; %t A327803 T[n_] := CoefficientList[b[n, n], x]; %t A327803 T /@ Range[0, 14] // Flatten (* _Jean-François Alcover_, May 06 2020, after 2nd Maple program *) %Y A327803 Columns k=0-2 give: A000007, A061095, A327826. %Y A327803 Row sums give A005651. %Y A327803 Cf. A000217, A003056, A022915, A131632 (when the parts are distinct), A226874. %K A327803 nonn,tabf %O A327803 0,5 %A A327803 _Alois P. Heinz_, Sep 25 2019