cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327806 Triangle read by rows where T(n,k) is the number of antichains of sets with n vertices and vertex-connectivity >= k.

This page as a plain text file.
%I A327806 #4 Sep 26 2019 21:15:00
%S A327806 1,2,0,5,1,0,19,5,2,0,167,84,44,17,0
%N A327806 Triangle read by rows where T(n,k) is the number of antichains of sets with n vertices and vertex-connectivity >= k.
%C A327806 An antichain is a set of nonempty sets, none of which is a subset of any other.
%C A327806 The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.
%e A327806 Triangle begins:
%e A327806     1
%e A327806     2   0
%e A327806     5   1   0
%e A327806    19   5   2   0
%e A327806   167  84  44  17   0
%t A327806 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A327806 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
%t A327806 vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
%t A327806 Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}]
%Y A327806 Except for the first column, same as the covering case A327350.
%Y A327806 Column k = 0 is A014466 (antichains).
%Y A327806 Column k = 1 is A048143 (clutters), if we assume A048143(0) = A048143(1) = 0.
%Y A327806 Column k = 2 is A275307 (blobs), if we assume A275307(1) = A275307(2) = 0.
%Y A327806 The unlabeled version is A327807.
%Y A327806 The case for vertex connectivity exactly k is A327351.
%Y A327806 Cf. A014466, A293606, A326704, A327057, A327062, A327125, A327358.
%K A327806 nonn,more,tabl
%O A327806 0,2
%A A327806 _Gus Wiseman_, Sep 26 2019