This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327811 #8 Sep 28 2019 07:45:56 %S A327811 2732225029,4344971347,5284288003,6552690421,7329791221,8845405603, %T A327811 8956420003,9307441621,9784676947,9786942547,13127589829,13143449029 %N A327811 Numbers obtained from cyclically permuting the base-7 digits of 13143449029 and converting back to decimal. %C A327811 All terms are prime, therefore 13143449029 is a base-7 circular prime, see A293660. %C A327811 13143449029 is remarkable in that it has 12 digits in base 7 and may be the largest known nonrepunit circular prime in that base. %e A327811 Base-7 expansion | Decimal value %e A327811 --------------------------------- %e A327811 643464321244 | 13143449029 %e A327811 434643212446 | 8956420003 %e A327811 346432124464 | 7329791221 %e A327811 464321244643 | 9784676947 %e A327811 643212446434 | 13127589829 %e A327811 432124464346 | 8845405603 %e A327811 321244643464 | 6552690421 %e A327811 212446434643 | 4344971347 %e A327811 124464346432 | 2732225029 %e A327811 244643464321 | 5284288003 %e A327811 446434643212 | 9307441621 %e A327811 464346432124 | 9786942547 %o A327811 (PARI) rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v %o A327811 decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i]) %o A327811 my(d=digits(13143449029, 7), e=d, v=[]); while(1, v=concat(v, [decimal(d, 7)]); d=rot(d); if(d==e, return(vecsort(v)))) %Y A327811 Cf. A293142, A293660, A327835. %K A327811 nonn,base,easy,fini,full %O A327811 1,1 %A A327811 _Felix Fröhlich_, Sep 26 2019