cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327811 Numbers obtained from cyclically permuting the base-7 digits of 13143449029 and converting back to decimal.

This page as a plain text file.
%I A327811 #8 Sep 28 2019 07:45:56
%S A327811 2732225029,4344971347,5284288003,6552690421,7329791221,8845405603,
%T A327811 8956420003,9307441621,9784676947,9786942547,13127589829,13143449029
%N A327811 Numbers obtained from cyclically permuting the base-7 digits of 13143449029 and converting back to decimal.
%C A327811 All terms are prime, therefore 13143449029 is a base-7 circular prime, see A293660.
%C A327811 13143449029 is remarkable in that it has 12 digits in base 7 and may be the largest known nonrepunit circular prime in that base.
%e A327811 Base-7 expansion | Decimal value
%e A327811 ---------------------------------
%e A327811 643464321244     | 13143449029
%e A327811 434643212446     |  8956420003
%e A327811 346432124464     |  7329791221
%e A327811 464321244643     |  9784676947
%e A327811 643212446434     | 13127589829
%e A327811 432124464346     |  8845405603
%e A327811 321244643464     |  6552690421
%e A327811 212446434643     |  4344971347
%e A327811 124464346432     |  2732225029
%e A327811 244643464321     |  5284288003
%e A327811 446434643212     |  9307441621
%e A327811 464346432124     |  9786942547
%o A327811 (PARI) rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v
%o A327811 decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i])
%o A327811 my(d=digits(13143449029, 7), e=d, v=[]); while(1, v=concat(v, [decimal(d, 7)]); d=rot(d); if(d==e, return(vecsort(v))))
%Y A327811 Cf. A293142, A293660, A327835.
%K A327811 nonn,base,easy,fini,full
%O A327811 1,1
%A A327811 _Felix Fröhlich_, Sep 26 2019