A327816 Number of irreducible factors in the factorization of the n-th cyclotomic polynomial over GF(8) (counted with multiplicity).
1, 1, 1, 2, 1, 1, 6, 4, 3, 1, 1, 2, 3, 6, 2, 8, 2, 3, 3, 2, 6, 1, 2, 4, 1, 3, 3, 12, 1, 2, 6, 16, 2, 2, 6, 6, 3, 3, 6, 4, 2, 6, 3, 2, 6, 2, 2, 8, 6, 1, 4, 6, 1, 3, 2, 24, 6, 1, 1, 4, 3, 6, 18, 32, 12, 2, 3, 4, 2, 6, 2, 12, 24, 3, 2, 6, 6, 6, 6, 8, 3, 2, 1, 12, 8, 3, 2, 4, 8, 6
Offset: 1
Examples
Let GF(8) = GF(2)[y]/(y^3+y+1). Factorizations of the n-th cyclotomic polynomial over GF(8) for n <= 10: n = 1: x + 1; n = 2: x + 1; n = 3: x^2 + x + 1; n = 4: (x + 1)^2; n = 5: x^4 + x^3 + x^2 + x + 1; n = 6: x^2 + x + 1; n = 7: (x + y)*(x + (y+1))*(x + y^2)*(x + (y^2+1))*(x + (y^2+y))*(x + (y^2+y+1)); n = 8: (x + 1)^4; n = 9: (x^2 + y*x + 1)*(x^2 + (y+1)*x + 1)*(x^2 + y^2*x + 1); n = 10: x^4 + x^3 + x^2 + x + 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := EulerPhi[n] / MultiplicativeOrder[8, n / 2^IntegerExponent[n, 2]]; Array[a, 100] (* Amiram Eldar, Jul 21 2024 *)
-
PARI
a(n) = my(s=n/2^valuation(n, 2)); eulerphi(n)/znorder(Mod(8, s))