cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327837 Decimal expansion of the asymptotic mean of the number of exponential divisors function (A049419).

This page as a plain text file.
%I A327837 #18 Dec 24 2024 07:30:48
%S A327837 1,6,0,2,3,1,7,1,0,2,3,0,5,4,1,8,0,5,2,3,4,9,6,2,6,3,1,5,6,2,1,1,6,1,
%T A327837 0,0,3,7,7,6,9,3,9,4,9,5,7,8,5,5,7,2,7,3,7,7,4,6,5,3,5,2,8,5,9,8,7,8,
%U A327837 8,8,8,6,0,2,1,6,3,3,5,4,7,2,7,5,6,6,7,3,3,9,0,4,9,4,8,8,0,6,4,1,8,0,7,5,7
%N A327837 Decimal expansion of the asymptotic mean of the number of exponential divisors function (A049419).
%H A327837 Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 52 (constant Z3).
%H A327837 V. Sita Ramaiah and D. Suryanarayana, <a href="https://web.archive.org/web/20200803214209/http://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005bab_1334.pdf">Sums of reciprocals of some multiplicative functions - II</a>, Indian J. Pure Appl. Math., Vol. 11 (1980), pp. 1334-1355 (eq. 2.37 and 3.18, pp. 1346 and 1354).
%H A327837 Abdelhakim Smati and Jie Wu, <a href="http://elib.mi.sanu.ac.rs/files/journals/publ/81/n075p021.pdf">On the exponential divisor function</a>, Publications de l'Institut Mathématique, Vol. 61 (1997), pp. 21-32.
%H A327837 László Tóth, <a href="http://publi.math.unideb.hu/load_jpg.php?p=1257">An order result for the exponential divisor function</a>, Publ. Math. Debrecen, Vol. 71, No. 1-2 (2007), pp. 165-171, <a href="https://arxiv.org/abs/0708.3552">arXiv preprint,</a>, arXiv:0708.3552 [math.NT], 2007.
%H A327837 László Tóth, <a href="http://emis.ams.org/journals/JIS/VOL20/Toth/toth25.html">Alternating sums concerning multiplicative arithmetic functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1 (section 4.10, p. 30).
%H A327837 Jie Wu, <a href="http://jtnb.cedram.org/item?id=JTNB_1995__7_1_133_0">Problème de diviseurs exponentiels et entiers exponentiellement sans facteur carré</a>, Journal de théorie des nombres de Bordeaux, Vol. 7, No. 1, (1995), pp. 133-141.
%F A327837 Equals lim_{k->oo} A145353(k)/k.
%F A327837 Equals Product_{p prime} (1 + Sum_{e >= 2} p^(-e) * (d(e) - d(e-1))), where d(e) is the number of divisors of e (A000005).
%F A327837 Equals Product_{p prime} (1 - 1/p) * (2 - (log(p-1) + QPolyGamma(0, 1, 1/p)) / log(p)). - _Vaclav Kotesovec_, Feb 27 2023
%F A327837 From _Amiram Eldar_, Dec 24 2024: (Start)
%F A327837 Equals lim_{m->oo} (1/m) * Sum_{k=1..m} k/uphi(k) = lim_{m->oo} (1/m) * Sum_{k=1..m} A319677(k)/A319676(k), where uphi(k) is the unitary totient function (A047994).
%F A327837 Equals lim_{m->oo} (1/log(m)) * Sum_{k=1..m} 1/uphi(k) = lim_{m->oo} (1/log(m)) * A379517(m)/A379518(m).
%F A327837 Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A361967(k).
%F A327837 Equals Product_{p prime} ((1-1/p) * (1 + Sum_{k>=1} 1/(p^k-1))).
%F A327837 Equals Product_{p prime} (1 + (1-1/p) * Sum_{k>=1} 1/(p^k*(p^k-1))). (End)
%e A327837 1.602317102305418052349626315621161003776939495785572...
%t A327837 $MaxExtraPrecision = 1500; m = 1500; em = 500; f[x_] := 1 + Log[1 + Sum[x^e * (DivisorSigma[0, e] - DivisorSigma[0, e - 1]), {e, 2, em}]]; c = Rest[ CoefficientList[Series[f[x], {x, 0, m}], x] * Range[0, m] ]; RealDigits[ Exp[NSum[Indexed[c, k] * PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
%Y A327837 Cf. A000005, A047994, A049419, A145353, A361013, A361967, A379517, A379518.
%Y A327837 Cf. A059956 (constant for unitary divisors), A306071 (bi-unitary), A327576 (infinitary).
%K A327837 nonn,cons
%O A327837 1,2
%A A327837 _Amiram Eldar_, Sep 27 2019
%E A327837 More digits from _Vaclav Kotesovec_, Jun 13 2021