cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327838 Decimal expansion of the asymptotic mean of the exponential totient function (A072911).

This page as a plain text file.
%I A327838 #11 May 30 2025 03:50:34
%S A327838 1,2,5,2,7,0,7,7,8,5,3,7,5,4,4,6,1,2,6,0,5,3,7,5,0,7,5,1,9,3,4,2,8,3,
%T A327838 0,6,0,4,3,9,2,3,7,9,6,7,1,0,8,9,1,5,3,7,3,7,4,4,8,4,9,5,1,4,0,2,9,5,
%U A327838 7,8,3,4,3,8,6,5,4,4,2,8,6,5,0,9,5,3,7
%N A327838 Decimal expansion of the asymptotic mean of the exponential totient function (A072911).
%H A327838 László Tóth, <a href="https://ac.inf.elte.hu/Vol_024_2004/doi/285_24.pdf">On certain arithmetic functions involving exponential divisors</a>, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 24 (2004), pp. 285-294.
%F A327838 Equals lim_{m->oo} (1/m) Sum_{k=1..m} A072911(k).
%F A327838 Equals Product_{p prime} (1 + Sum_{e >= 3} (phi(e) - phi(e-1))/p^e), where phi is the Euler totient function (A000010).
%e A327838 1.252707785375446126053750751934283060439237967108915...
%t A327838 $MaxExtraPrecision = 500; m = 500; f[x_] := Log[1 + Sum[x^e * (EulerPhi[e] - EulerPhi[e - 1]), {e, 3, m}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[f[1/2] + NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
%Y A327838 Cf. A000010, A072911, A322887, A327837, A361013.
%K A327838 nonn,cons
%O A327838 1,2
%A A327838 _Amiram Eldar_, Sep 27 2019