cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327839 Decimal expansion of the asymptotic density of numbers whose number of divisors is a power of 2 (A036537).

Original entry on oeis.org

6, 8, 7, 8, 2, 7, 1, 3, 9, 4, 4, 3, 6, 2, 4, 8, 8, 1, 0, 6, 3, 5, 1, 0, 8, 2, 4, 5, 4, 9, 8, 7, 0, 9, 8, 3, 2, 0, 3, 0, 9, 5, 8, 7, 5, 3, 0, 1, 0, 1, 5, 2, 1, 7, 1, 0, 5, 6, 4, 0, 1, 6, 9, 0, 8, 8, 7, 4, 8, 4, 9, 1, 6, 4, 6, 2, 8, 2, 9, 6, 3, 5, 9, 4, 7, 0, 7
Offset: 0

Views

Author

Amiram Eldar, Sep 27 2019

Keywords

Examples

			0.687827139443624881063510824549870983203095875301015...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; em = 10; f[x_] := Log[(1 - x)*(1 + Sum[x^(2^e - 1), {e, 1, em}])]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x] * Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals Product_{p prime} (1 - 1/p) * (1 + Sum_{i>=1} 1/p^(2^i-1)).
Equals lim_{k->oo} A036538(k)/2^k.