cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327852 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A092869.

This page as a plain text file.
%I A327852 #17 Sep 29 2019 20:22:10
%S A327852 1,-1,-1,1,-1,1,1,-3,1,2,0,2,-2,-2,-1,3,1,-5,2,0,0,8,-4,-7,5,-2,0,1,
%T A327852 -8,0,12,2,-3,-1,-7,9,4,-7,-7,-6,10,9,2,-6,-14,15,3,-15,19,-30,6,37,
%U A327852 -31,10,9,-23,20,4,-29,4,14,4,-13,23,-14,-19,39,-29,-23,35,0,-34,48
%N A327852 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A092869.
%H A327852 Seiichi Manyama, <a href="/A327852/b327852.txt">Table of n, a(n) for n = 0..1000</a>
%F A327852 G.f.: Product_{i>=1} Product_{j>=1} (1-x^(i*(8*j-1))) * (1-x^(i*(8*j-7))) / ((1-x^(i*(8*j-3))) * (1-x^(i*(8*j-5)))).
%F A327852 G.f.: Product_{k>=1} (1-x^k)^A035185(k).
%o A327852 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^sumdiv(k, d, kronecker(2, d))))
%Y A327852 Product_{k>=1} (1 - x^k)^(Sum_{d|k} (b/d)), where (m/n) is the Kronecker symbol: this sequence (b=2), A288007 (b=4), A327688 (b=5).
%Y A327852 Cf. A035185, A092869, A327851.
%K A327852 sign
%O A327852 0,8
%A A327852 _Seiichi Manyama_, Sep 28 2019