This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327855 #24 Jan 09 2024 13:14:00 %S A327855 1,4,4,1,4,4,0,0,1,4,4,0,4,8,0,0,4,1,4,8,8,8,8,8,0,4,0,0,0,0,1,4,4,4, %T A327855 12,12,12,8,12,12,12,0,8,8,8,0,0,0,4,0,0,1,4,4,4,12,8,4,8,4,4,12,8,12, %U A327855 24,8,8,8,0,4,8,4,8,8,0,4 %N A327855 Irregular triangle read by rows: T(n,k) = [x^k] (Sum_{i=0..prime(n)-1} (1+Legendre(i,prime(n))) * x^i)^2, for 0 <= k <= 2*prime(n)-2. %H A327855 Wikipedia, <a href="https://en.wikipedia.org/wiki/Gauss_sum">Gauss sum</a>. %H A327855 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_symbol">Legendre symbol</a>. %F A327855 For n > 1, Sum_{k=0..2*prime(n)-2} T(n,k)*x^k == (-1)^((p - 1)/2) * p mod ((x^p - 1)/(x - 1)) where p is n-th prime. %e A327855 Triangle begins %e A327855 [1, 4, 4], %e A327855 [1, 4, 4, 0, 0], %e A327855 [1, 4, 4, 0, 4, 8, 0, 0, 4], %e A327855 [1, 4, 8, 8, 8, 8, 8, 0, 4, 0, 0, 0, 0], %e A327855 [1, 4, 4, 4, 12, 12, 12, 8, 12, 12, 12, 0, 8, 8, 8, 0, 0, 0, 4, 0, 0], %e A327855 [1, 4, 4, 4, 12, 8, 4, 8, 4, 4, 12, 8, 12, 24, 8, 8, 8, 0, 4, 8, 4, 8, 8, 0, 4], %e A327855 ... %e A327855 ------------------------------------------ %e A327855 1 + 4*x + 4*x^2 = 4*(x^3 - 1)/(x - 1) - 3. %e A327855 1 + 4*x + 4*x^2 + 4*x^4 + 8*x^5 + 4*x^8 = 4 * (x^4 - x^3 + 2*x - 1)*(x^5 - 1)/(x - 1) + 5. %e A327855 1 + 4*x + 8*x^2 + 8*x^3 + 8*x^4 + 8*x^5 + 8*x^6 + 4*x^8 = 4 * (x^2 - x + 2)*(x^7 - 1)/(x - 1) - 7. %o A327855 (PARI) forprime(p=2, 30, print(Vecrev((sum(k=0, p-1, (1+kronecker(k, p))*x^k))^2, 2*p-1),", ")) %Y A327855 Cf. A073579, A226520. %K A327855 nonn,tabf %O A327855 1,2 %A A327855 _Seiichi Manyama_, Sep 28 2019